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Introduction

Maintaining mental health during adolescence is criti-
cal for lifelong psychological well-being (Kieling et al., 
2011). Anxiety is one of the most common types of emo-
tional problems among adolescents worldwide (Freeman, 
2022). In the U.S., for example, the most recent epide-
miological report reported ~ 9.11% (6 million) adolescents 
suffering from the anxiety disorders under the ICD-10-CM 
diagnosis (Barr et al., 2022). Dysfunctions in cognitive 
development severely disrupt adolescents’ psychological 
status, social life, and academic performance, resulting in 
long-lasting negative effects that may persist throughout 
life (Sanders, 2013).

A number of previous studies have shown that anxiety 
impairs several cognitive functions (for review, see Refs. 
Castaneda et al., 2008; Eifert, 1992; Eysenck et al., 1987; 
Ferreri et al., 2011). Working memory (WM), defined as the 
process of temporarily maintaining information for imme-
diate subsequent use, is one of the central cognitive func-
tions that enables various forms of mental operations in 
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Abstract
Pathological anxiety is one of the most common mental health problems in adolescents. It is well documented that working 
memory, a core cognitive function, is often impaired in individuals with anxiety disorders. However, the computational 
mechanisms underlying these deficits in adolescents with anxiety disorder remain elusive. We used the classic delay-
estimation visual working memory (VWM) task to assess the performance of adolescents with anxiety disorders (N = 39) 
and healthy controls (N = 41). Using a computational psychiatry approach, we tested 14 computational models established 
in basic research of VWM. Model comparison results identified the variable precision model as the best-fitting model 
for both groups, suggesting that the two groups share a qualitatively similar VWM process in completing the task. Sub-
sequent analyses of the parameter estimates pointed to atypically reduced memory resources as the primary determinant 
of impaired VWM performance in adolescents with anxiety disorder. Crucially, the estimated memory resources in the 
anxious group predicted the severity of anxiety symptoms. Our results demonstrate that the reduced memory sources are 
the key factor mediating working memory deficits in adolescents with anxiety disorders, and this factor may also serve 
as a potential behavioral marker for future clinical interventions.
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daily life. WM is also a predictor of performance in a vari-
ety of functional domains, such as fluid intelligence (Jaeggi 
et al., 2008) and academic performance (Titz & Karbach, 
2014). WM impairments are associated with several psy-
chiatric disorders, including schizophrenia (Forbes et al., 
2009; Zhao et al., 2021), major depressive disorder (Rose & 
Ebmeier, 2006), autism spectrum disorder (Williams et al., 
2005), and anxiety disorders (Owens et al., 2008).

Previous research has shown a clear association between 
the severity of anxiety symptoms and poorer WM perfor-
mance on several types of memory span tasks, including 
complex span (Turner & Engle, 1989), simple span (Darke, 
1988), and dynamic span tasks (Vytal et al., 2012). A meta-
analysis of 177 studies and 22,061 individuals supports the 
association between anxiety symptoms and poorer WM per-
formance (Moran, 2016). The similar association has also 
been found for spatial and verbal working memory tasks 
(Vytal et al., 2013). Taken together, these studies have docu-
mented the convergent findings of WM deficits in people 
with anxiety disorders across different forms of behavioral 
tasks. Despite the well-established poorer WM performance 
in patients with anxiety disorders, the exact underlying 
computational explanations for the impact of anxiety dis-
orders on visual working memory (VWM) have not been 
explicitly specified.

Existing theories suggest that anxiety consists of two 
dimensions: anxious apprehension (or worry) and anxious 
arousal (Barlow et al., 1996; Heller et al., 1997a, b; Nitschke 
et al., 2001). Worry refers to the mental rumination about 
the possible negative outcomes in the future; arousal refers 
to the uncontrolled psychological or physiological hyper-
tension (Watson et al., 1995). It has been suggested that 
worry, especially verbal rumination, consumes additional 
cognitive resources, and thus interferes with task-relevant 
processes (Eysenck & Calvo, 1992). Similarly, task-irrele-
vant arousal may impose additional cognitive costs and thus 
interfere with the task-relevant processes (Zhu et al., 2024; 
Sohail & Zhang, 2024; Sarason, 1988). Taken together, the-
ories on both dimensions suggest that anxiety may limit the 
capacity or reduce the resources of working memory. On 
the surface, this view is supported by the well-established 
finding that a reduced memory span is typically associated 
with patients with anxiety disorders (Moran, 2016). How-
ever, as discussed below, behaviorally measured WM span 
is the result of several complex cognitive processes, involv-
ing not only capacity or resources, but also other cogni-
tive factors and their interactions. It remains unclear what 
specific mechanism contributes to the poorer WM perfor-
mance in anxiety disorders. For example, is poorer WM per-
formance associated with fewer memory resources or less 
efficient resource allocation or their interaction? Elucidating 
the mechanisms of how anxiety affects WM is imperative 

because intervention strategies (e.g., cognitive-behavioral 
therapy) rely heavily on our understanding of the hidden 
processes that cause and maintain the cognitive deficits in 
anxiety disorders.

Using computational modeling, recent work in basic 
research has significantly deepened our understanding of 
VWM and revealed several new factors that may medi-
ate WM performance. For example, there exists an ongo-
ing debate as to whether WM resources are maintained as 
a continuous value or as discrete chunks (Bays & Husain, 
2008; Ma et al., 2014; Zhang & Luck, 2008). These two 
theories can be distinguished by comparing corresponding 
computational models. In addition, empirical evidence now 
shows that memory resources and capacity, two seemingly 
similar concepts, may play fundamentally different roles in 
WM (van den Berg et al., 2014; van den Berg et al., 2012). 
Researchers have also found that poor memory perfor-
mance can arise from either reduced memory capacity (i.e., 
the maximum number of items that can be held in memory) 
and/or reduced memory precision (i.e., how well each indi-
vidual item can be represented) for an item (van den Berg 
et al., 2014). These studies using computational modeling 
can accurately quantify the various factors that contribute to 
performance outcomes. Applying such a nuanced approach 
in clinical research has helped to identify specific deficits 
in psychiatric disorders, such as schizophrenia (Chey et al., 
2002; Zhao et al., 2021). Recent studies have also used com-
putational models to elucidate the mechanisms of anxiety 
(Gillan et al., 2021; Hitchcock et al., 2022; Zainal et al., 
2023). These examples highlight the use of computational 
models developed in basic science to disentangle the theo-
ries of psychiatric disorders. The computational investiga-
tions may provide new insights into the targets of behavioral 
treatments (Geng et al., 2022).

In this study, we took advantage of the well-developed 
paradigm and classical computational models in basic 
VWM research to elucidate the computational substrates 
of memory deficits in adolescents with anxiety disorder 
(AAD). We used the delay-estimation VWM paradigm and 
systematically assessed subjects’ memory errors as memory 
load increased. In this task, an observer views and memo-
rizes the colors of several squares on the screen, and, after 
a short delay, chooses the color of a cued target on a con-
tinuous color spectrum. The discrepancy between the true 
target color and the chosen color can be used to quantify and 
model VWM abilities. Most importantly, we evaluated a 
thorough list of mainstream computational models of VWM 
to explore the underlying factors of atypical VWM perfor-
mance. Through model comparisons and model parameter 
analyses, we were able to identify which of the following 
factors best explain the impaired VWM functions in AAD: 
(1) fewer memory resources, (2) smaller memory capacity, 
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or (3) low resource allocation efficiency. In contrast to pre-
vious behavioral findings, we identified reduced memory 
resources rather than reduced memory capacity or abnor-
mal resource allocation efficiency as the key determinant of 
VWM deterioration in AAD. Furthermore, estimated mem-
ory resources can predict individual differences in anxiety 
symptom severity. Our findings highlight the lack of work-
ing memory resources as a key mechanism in AAD.

Methods and materials

Ethics and participants

All experimental protocols were approved by the insti-
tutional review board of Nankai University. All research 
was conducted in accordance with relevant guidelines and 
regulations. Informed written consent was obtained from all 
participants. 45 adolescents with anxiety disorder (AAD) 
were recruited for this study. All participants were recruited 
from the Department of Adolescent at the Tianjin AnDing 
Psychiatric Hospital. The outpatients who met the criteria 
were informed about the experiments. All 45 AADs were 
clinically diagnosed by clinical psychiatrists according to 
ICD-10 without structured interviews. In particular, all 
AADs had already been diagnosed with an anxiety disorder 
according to ICD-10. Here, an anxiety disorder is described 
as “emotional disorders with onset specific to childhood”, 
according to the subcode F93 in ICD-10. We did not further 
differentiate the exact symptoms of anxiety and treated F93 
as a unity. 6 subjects were excluded because their depression 
scores were greater than 24. Similarly, 45 healthy controls 
were also recruited. 4 subjects were excluded because their 
depression scores were greater than 24 and/or their anxiety 
scores were greater than 35. All participants were not paid 
but received the feedback on their questionnaire results.

All healthy control (HC) participants were recruited 
from the Tianjin No.19 Middle School. The two groups 
were matched in gender (χ2 = 2.847, p = 0.092). We defined 

healthy control participants as those adolescents: (1) who 
have no past or current diagnosed psychiatric disorders, 
major physical disabilities, and substance abuse; (2) whose 
Child Depression Inventory (CDI) scores were not greater 
than 24, a threshold defined as the two standard devia-
tions from the norm documented in Yu and Li (2000); (3) 
whose Screen for Child Anxiety Related Emotional Disor-
ders (SCARED) scores were not greater than 35, a thresh-
old defined as the two standard deviations from the norm 
documented in Wang et al. (2002). In particular, to exclude 
the possible confounding effect of comorbid depression, we 
recruited only adolescents with anxiety disorder and with-
out clinically confirmed comorbidity with depression. All 
demographic information is summarized in Table 1.

For age matching, we specifically recruited the healthy 
adolescents at the age of 14, which is equivalent to the mean 
age of the AAD groups. However, due to the small age vari-
ance in the HC group, the AAD group was slightly older 
than the HC group (14.64 ± 1.693 vs. 13.39 ± 0.494, t(82) 
= 4.694, p < 0.001, Cohen’s d = 1.027).

Power analysis

Before the experiment, we calculated the sample size based 
on the estimated between-group difference effect size of 
0.70, which is considered medium to large (Cohen, 2013). 
Based on a two-sided test with an alpha of 0.05, a power of 
80%, and an estimated effect size of 0.70, we needed at least 
34 patients in each group. The above power analysis was 
conducted using G-Power 3.1.

Questionnaires

In this study, we used the Screen for Child Anxiety Related 
Emotional Disorders (SCARED) and the Children’s Depres-
sion Inventory (CDI) to measure anxiety and depression 
symptoms, respectively.

The SCARED was originally developed by Birmaher 
et al. (1999). SCARED can be used for clinical diagnosis, 
basic research, and epidemiological studies. The SCARED 
parallels the classifications of anxiety disorders in DSM-
IV and has good internal consistency and validity. We used 
the Chinese version of SCARED (translated and revised 
by (Wang et al., 2002)), which has good internal consis-
tency and validity (α = 0.43–0.89, according to (Wang et 
al., 2002)). This version contains 41 items representing five 
factors—somatization/panic (10 items), generalized anxi-
ety (12 items), separation anxiety (8 items), social phobia 
(7 items), and school phobia (4 items). Each item can be 
scored 0 (no problem at all), 1 (sometimes), and 2 (frequent) 
points to indicate the severity.

Table 1 Demographics and clinical information of adolescents with 
anxiety disorder (AAD) and healthy control (HC) subjects

AAD (N = 39) HC (N = 41)
Mean SD Mean SD

Age 14.64 1.693 13.39 0.494
range 11–18 n/a 13–14 n/a
Female/Male 27/12 n/a 20/21 n/a
Inpatient/Outpatient 5/34 n/a n/a n/a
CDI scores 29.00 11.287 8.97 5.364
SCARED scores 48.43 16.141 17.415 9.516
CDI: Children’s Depression Inventory (Helsel & Matson, 1984)
SCARED: The Screen for Child Anxiety Related Emotional Disor-
ders (Birmaher et al., 1999)
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b = 38) with a radius of 60 in the color space. The square 
array was followed by a 1000 ms black period for working 
memory retention. After the blank period, an equal number 
of outlined colorless squares were shown at the same posi-
tions as the previous colored squares. One of the squares 
were bold and served as the target. A 360° colorwheel with 
a random starting color was displayed. The inner and outer 
radius of the colorwheel were 7.8° and 9.8°, respectively. 
Participants were instructed to select the memorized color 
of the bold target square by clicking on the corresponding 
position on the colorwheel. Participants were asked to select 
the color as precisely as possible, and reaction time was not 
restricted. Each participant completed 30 trials for set sizes 
1 and 8, and 50 trials for set sizes 3 and 6, respectively. 
For most computational models, trials at medium difficulty 
levels (i.e., set sizes 3 and 6) provide the most valuable data 
for constraining model parameters. As a result, we did not 
evenly distribute the trials across all set sizes, but instead 
focused more heavily on the medium difficulty levels.

Computational modeling

The mathematical details of all 14 models are documented 
in the Supplementary Information. All models used here 
embody several important theoretical underpinnings dis-
cussed in basic research of VWM. First, there exists a 
long-standing debate as to whether memory resources can 
be formulated as a continuous quantity (Bays & Husain, 
2008) or as discrete chunks (Zhang & Luck, 2008). Sec-
ond, it has also been suggested that memory capacity can 
be an infinite (Zhang & Luck, 2008) or a fixed value (van 
den Berg et al., 2012). Third, previous work also suggests 
that subjects may inadvertently recall the color of the wrong 
item rather than the cued target, a phenomenon referred to 
as the swapping error (SE) (Bays, 2016). We emphasize that 
memory resources and memory capacity have independent 
definitions here. Memory resources are formulated either a 
continuous quantity and or discrete chunks. However, mem-
ory capacity is defined as an integer, which represents the 
maximum number of items can be encoded into memory. 
For example, if memory capacity of an individual is four 
and five squares are presented, memory resources can only 
be allocated to the maximumly four items. Thus, memory 
capacity and the total amount of memory resources are 
independent.

We summarize all models in Table 2 and provide detailed 
mathematical descriptions in Supplementary Information 
Note 1. A total of 14 distinct computational models were 
constructed, each identified by a combination of acro-
nyms. The item-limit (IL) model assumes a direct mapping 
between input stimuli and behavioral responses, as well 
as a fixed capacity. The mixture (MIX) model posits that 

The CDI is a self-evaluation questionnaire that was 
originally developed by Kovacs (1992) based on the Beck 
Depression Inventory. The CDI is suitable for children or 
adolescents aged 7–17 years, and has high reliability and 
validity. We used the Chinese version of CDI, which has 
good internal consistency and validity (α = 0.85 according to 
(Yu & Li, 2000)). This version contains 27 items that com-
prise five subscales: anhedonia (8 items), negative mood 
(6 items), negative self-esteem (5 items), ineffectiveness 
(4 items), and interpersonal problems (4 items). Each item 
can be assigned to one of three choices indicating increas-
ing levels of severity. The CDI requires no strong reading 
abilities and can be completed within 15 min. The CDI is 
currently the most widely used self-evaluation depression 
questionnaire for children and adolescents.

As expected, the AAD had severer anxiety and depres-
sion problems than the HC (SCARED: t(73) = 9.239, p < 
0.001, Cohen’s d = 2.178; CDI: t(71) = 9.606, p < 0.001, 
Cohen’s d = 2.312). Detailed demographic information is 
summarized in the Table 1.

Stimuli and task

All experimental data from the adolescents with AAD were 
collected in a quiet room at the Tianjin AnDing Psychiatric 
Hospital. All participants were recruited from the Depart-
ment of Adolescents at the Tianjin AnDing Psychiatric 
Hospital. All AADs first received a clinical diagnosis. The 
patients who met our criteria were further informed about 
our experiment, and the patients could voluntarily choose 
to participate or not. A participant was further escorted to 
the experimental room. All HC participants were also tested 
in a quiet room at the Tianjin No.19th Middle School. All 
participants first completed the behavioral task and then the 
questionnaires.

All stimuli were generated using Matlab 8.1 and Psych-
toolbox 3 and presented on an LCD monitor. The viewing 
distance was kept to 50 cm. In the color delay-estimation 
task (Fig. 1A), a fixation circle with a radius of 0.25° was 
first presented at center-of-gaze, and the fixation lasted 
for a duration randomly selected from a sequence of 300, 
350, 400, 450, and 500 ms. Participants were instructed 
to maintain their fixation on the fixation circle throughout 
the whole experiment. Next, a set of squares with differ-
ent colors were presented at an eccentricity of 4°. Each 
square covered a visual angle of 1.5° × 1.5°. The number of 
squares was defined as the set size in this trial. Their posi-
tions were randomly selected from 8 predefined positions 
that formed an invisible circle with a radius of 4°. Their 
colors were randomly selected from the 180 colors that are 
equally spaced along the wheel representing the CIE L*a*b 
color space. The color wheel was centered at (L = 70, a = 20, 
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the resources distributed stochastically across items and 
trials. The variable-precision-with capacity (VPcap) model 
further included a fixed capacity to the VP model. Addition-
ally, we incorporated the mechanisms of SE into these seven 
models, indicated by the SE postfix. For example, SASE 
refers to the model that combines the SA assumption and 
the SE mechanism. In Table 2, we categorize these 14 mod-
els based whether the SE mechanism is included, whether 
discrete or continuous memory resources are assumed, and 
whether an integer capacity is posited.

different set size level induce varying encoding precision 
in VWM, as well as a fixed capacity. Slot-plus-averaging 
(SA) model assumes discrete memory chunks (Zhang 
& Luck, 2008), and a recent variant—cosine slots-plus-
averaging (cosSA) model—further incorporates stimulus-
specific precision (Pratte et al., 2017). The equal-precision 
(EP) model assumes that continuous memory resources, 
with resources equally distributed across all items and all 
trials. In contrast, the variable-precision (VP) model also 
assumes continuous memory resources but proposes that 

Fig. 1 Trial schematic and the poor VWM performance in the AAD 
group. A A trial begins with a fixation cross at the center of the screen. 
An array of colored squares appears on the screen (set size = 3 in this 
example). After a 900 ms delay, the subject is asked to click on the 
location corresponding to the memorized color of the cued item (the 
one in the lower left corner in this example). The bottom row illus-
trates the different set size (N) levels of the sample array. Task dif-
ficulty increases as the set size level increases. B All colors on the 
color circle are coded as angles within (0, 360º). The absolute angular 
difference between the true color and the reported color is defined as 

the response error. C Response errors typically follow a von Mises 
distribution ranging from -π to π. The width (circular standard distri-
bution) of the von Mises distribution indicates the behavioral perfor-
mance. The distributions become wider as the task difficulty (i.e., set 
size) increases, since more responses deviate from the true target. D 
CSD of the response errors of the two groups in each set size condition. 
The AAD group had larger CSD of response errors for set sizes 1 and 
3, indicating poorer performance. Error bars represent standard errors 
across subjects. Significance convention is: *, p < 0.05
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k families and there are j models in family i, then the prior 
probability of models in these families is 1/(k × j). We clas-
sified model families based on three factors (see Table 2 for 
more details). For each factor, all 14 models were divided 
into two model families, and we calculated the LPFP for 
each participant from the two model families, then we com-
pared the LPFP between two model families for the two 
groups separately. The results of the comparison are shown 
in Fig. 2C-E.

Statistical analysis

All ANOVAs and t-tests were performed in the open-source 
statistical software JASP 0.16.2 (https://jasp-stats.org/). All 
t-tests were two-tailed except for those on the circular stan-
dard deviation (CSD) of response errors in the two groups 
(Fig. 1B). All multiple comparisons were Holm-corrected 
using JASP. We performed a mixed ANOVA with the CSD 
of response errors as the dependent variable, group as the 
between-subject variable, and set size as the within-subject 
variable. We also performed several two-sample t-test to 
examine the group difference in the fitted parameters of the 
VP model.

Results

Impaired visual working memory in AAD

39 adolescents who have been clinically diagnosed with 
anxiety disorder (AAD) according to the International Clas-
sification of Diseases-10 and 41 demographically matched 
healthy control (HC) adolescents completed this study.

We used the classical delay-estimation VWM task 
(Fig. 1A) to measure the performance of the two groups 
(Zhang & Luck, 2008). The absolute difference between 
the reported color and the true color of the target is defined 
as the response error for that trial (Fig. 1B). Across trials, 

All 14 models were separately fitted to the behavioral 
data of each subject using the method of maximum like-
lihood estimation. Optimization was performed using the 
BADS toolbox (Acerbi & Ma, 2017). For each model fitted 
to each subject’s data, we randomly initialized its param-
eters 20 times and obtained the set of parameters that 
achieved the maximum log-likelihood. We also computed 
Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) for model comparisons at the individ-
ual level (Fig. 2A). To further assess the model robustness 
at the group level, we approximated the log model evidence 
(LME) of each model in each participant using the equation 
as follows:

log(p (D|M)) = log(p
(

D|θ̂, M
)

) − d

2
logN  (1)

where M indicates a model, D indicates a subject’s data, d is 
the number of free parameters in the model M, and N is the 
number of trials in the data. We thus obtained the LME of all 
14 models for all 84 participants. We then performed group-
level Bayesian model selection using spm_BMS.m function 
in the SPM software (Rigoux et al., 2014). The protected 
exceedance probabilities of all models are shown in Fig. 2B. 
To further reveal the potential influences of swap errors and 
to avoid the model dilution problem in model compari-
sons, we also calculated the log posterior family probability 
(LPFP) of each family as follows:

Ti =
∑

m∈fi

eLME · p (m) (2a)

LPFP i = log
Ti∑k

n=1Tn
 (2b)

where LME is a 1 × j vector representing the log model evi-
dence of models in family i, and j is the number of models in 
this family. p (m) is the model prior probability. If we have 

Table 2 Model families of three factors
Factors Swap error Resources Capacity
Model families No SE SE Discrete Continuous Fix Infinite

IL
MIX MIX

IL ILSE IL EP cosSA
MIX MIXSE cosSA VP SA EP
cosSA cosSASE SA VPcap VPcap VP

Models SA SASE ILSE MIXSE ILSE EPSE
EP EPSE cosSASE EPSE MIXSE VPSE
VP VPSE SASE VPSE cosSASE
VPcap VPcapSE VPcapSE SASE

VPcapSE
SE: swap errors; IL: item-limit; EP: equal precision; SA: slot average; VP: variable precision; VPcap: variable precision + capacity limit
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Unsurprisingly, we found a significant main effect of set size 
(F(3, 234) = 744.864, p < 0.001, ƞp

2 = 0.905), indicating that 
the subjects’ CSD of response errors increased as set size 
increased. We also observed the main effect of group (F(1, 
78) = 4.821, p = 0.031, ƞp

2 = 0.058), indicating the overall 
poorer performance of the AAD group as compared to the 
HC group. Importantly, there was a significant interaction 
between group and set size (F(3, 234) = 4.21, p = 0.006, 
ƞp

2 = 0.051). Post-hoc analyses showed that, as compared 
to HC, the AAD group had higher CSD of response errors 
when set sizes were low (set size 1, t(78) = 2.694, p = 0.049, 
Cohen’s d = 0.603, Holm corrected; set size 3, t(78) = 3.243, 
p = 0.011, Cohen’s d = 0.725, Holm corrected). The two 
group’s performance were comparable when set sizes were 

response errors should follow a von Mises distribution 
(Fig. 1C). Clearly, task difficulty increases as the num-
ber of to-be-remembered squares (i.e., set size) increases. 
Furthermore, as task difficulty increases, the overall distri-
butions of response errors become wider. We therefore cal-
culated the circular standard deviation (CSD) of response 
errors as a measure of memory quality for each trial, as 
color errors in this experiment is a circular continuous vari-
able. It is important to note that we used the CSD rather 
than the average response error, because the mean reflects 
bias rather than the magnitude of error (i.e., the spread or 
width of the response error distribution) in color estima-
tion. This approach is consistent with the commonly used 
metric in delay-estimation tasks (Zhang & Luck, 2008). 

Fig. 2 Model and model family 
comparisons. A The proportion of 
participants for whom a model is 
the best-fitting model by AIC and 
BIC. For both AIC and BIC, and 
for both groups, the variable preci-
sion (VP) model is the best model 
for the majority of participants. 
The model names with and without 
the postfix “SE” indicate whether 
a model includes swap error in 
the model or not. B Protected 
exceedance probability of the 14 
models. A model with a higher 
protected exceedance probability 
is a better model. The VP model is 
the best model (other models’ are 
minimal and barely seen). C-E Log 
posterior family probabilities of 
three factors: with (SE) or without 
(no SE) swap errors, discrete or 
continuous memory resources, and 
fixed or infinite memory capacity. 
The results here indicate that the 
models assuming no swap errors, 
continuous memory resources, and 
infinite capacity outperform their 
counterparts
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variable precision model is the best-fitting model to explain 
the VWM performance of both groups.

Family-wise model comparisons reveal similar memory 
components in both groups

As mentioned above, the 14 models incorporate different 
combinations of theoretical assumptions. For example, the 
VP model has three basic assumptions: (1) continuous mem-
ory resources; (2) infinite memory capacity; (3) no swap 
error. When evaluating each individual factor (e.g., continu-
ous vs. discrete memory resources), we need to combine the 
models within each family and perform family-wise model 
comparisons to avoid possible model dilution. Here, we 
further evaluated three theoretical factors here: (1) whether 
memory resources are continuous or discrete; (2) whether 
memory capacity is a fixed number or infinite; (3) whether 
swap errors exist. To do this, we calculated the log fam-
ily evidence of the model families for each question (Penny 
et al., 2010). For example, the models IL, SA, cosSA and 
their variants ILSE, SASE, cosSASE form a model family 
that assumes discrete memory resources. The models MIX, 
EP, VP, VPcap and their variants MIXSE, EPSE, VPSE, 
and VPcapSE are the counterpart that assumes continuous 
memory resources. When evaluating discrete vs. continuous 
memory resources, we should compare the two model fami-
lies rather than two individual models. All model families 
are summarized in Table 2.

The results show that the model family assuming con-
tinuous rather than discrete memory resources can better 
explain the data (Fig. 2D). Similarly, the model families 
assuming infinite memory capacity (Fig. 2E) or no swap 
errors (Fig. 2C) outperformed the other families (see detailed 
model family comparisons in Methods). Most importantly, 
these results held for both groups, indicating that the two 
groups shared the qualitatively same observer model in this 
VWM task.

Reduced memory resources in AAD

If the two groups shared the same observer model, their per-
formance differences could therefore be attributed to param-
eter differences. We further examined the fitted parameters 
of the VP model in both groups. The VP model has four free 
parameters (Fig. 3). The initial resources (J1) indicates the 
total amount of memory resources, as a continuous value, 
that a subject possesses. The initial resource is also the key 
parameter of interest here. The power decay exponent α 
indicates how fast the averaged resources (J) received by 
each item decrease as the set size (N) increases. The actual 
memory resources each item receives vary from trial to 
trial, which is reflected by the resource allocation variability 

high (set size = 6, t(78) = 0.2, p = 1.00, Cohen’s d = 0.045, 
Holm corrected; set size 8, t(78) = 0. 514, p = 1.00, Cohen’s 
d = 0.115, Holm corrected).

Computational modeling of VWM performance

Although the above analyses have firmly established the 
poorer VWM performance of the AAD group, the under-
lying computational factors that cause such differences 
remain unclear. To gain further mechanistic insight into the 
aberrant behavior, we used the computational models that 
commonly used in basic VWM research. The overall analy-
sis consists of two steps. First, we identify the best-fitting 
model that best describes the behavior of both groups. We 
then compare the fitted parameters between the groups 
in this best-fitting model to reveal the group differences. 
Notably, in the first step, we did not assume the appropriate 
model a priori, but instead took an unbiased approach to 
systematically fit and compare a total of 14 computational 
models in the VWM basic research. The intuitions of all 
models are summarized in the Method sections. All math-
ematical details of the models are documented in Supple-
mentary Information Note 1.

We developed models that incorporate the various 
combinations of mechanisms assumed in previous stud-
ies, including whether a model includes swapping errors, 
whether a model assumes discrete or continuous memory 
resources, and whether a model assumes a fixed capacity. 
This modeling approach resulted in different assumptions 
and model structures. This approach is also known as fac-
torial model comparison (Oberauer, 2023; van den Berg et 
al., 2014). This is critical because we do not make strong 
prior assumptions about what the mechanism must be but 
instead search exhaustively from a large pool of possible 
mechanisms. Theoretically, the apparent behavioral differ-
ences between the two groups could result from either quali-
tatively different observer models or quantitatively different 
parameters of the same model. Factorial model comparisons 
and parameter analyses allow us to distinguish between 
these two scenarios.

We fit all 14 models to each participant’s data and quan-
tified the model performance using Akaike’s Information 
Criterion (AIC) and Bayesian Information Criterion (BIC). 
As shown in Fig. 2A, the variable precision (VP) model 
outperformed other candidate models when evaluated 
under both AIC and BIC. In addition, we also performed 
random-effects Bayesian model selection at the group level 
(Rigoux et al., 2014), and the VP model exhibited the high-
est protected exceedance probability over all other compet-
ing models (Fig. 2B). The model comparisons at both the 
individual and the group levels strongly suggest that the 
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severity in the AAD group. Such an association with anxiety 
severity was not found for either initial resource estimates 
(Pearson’s r = 0.055, p = 0.734) or choice variability (Pear-
son’s r = 0.011, p = 0.945) in the HC group (see Fig. 4F-I). 
These results further support the initial memory resources 
as a putative behavioral marker of anxiety in adolescents.

Discussion

In this study, we focus on the behavioral signatures and com-
putational substrates of the well-established impaired work-
ing memory performance in AAD. We assessed the VWM 
performance of a clinically diagnosed AAD group and a 
HC group using the classic delay-estimation task. To unbi-
asedly disentangle the potential factors contributing to the 
behavior, we fitted 14 mainstream computational models, 
and performed systematic model comparisons and param-
eter analyses. Results showed that the two groups shared the 
same observer model—the variable precision model, but the 
AAD group generally had a lower amount of initial memory 
resources. Importantly, estimated memory resources served 
as a predictor of self-reported anxiety symptom severity.

Changing concepts of visual working memory

Our results are of particular interest to both computational 
cognitive scientists and clinical neuroscientists. Follow-
ing the spirit of emerging interdisciplinary field—com-
putational psychiatry, we use the existing computational 
theories from basic research to understand the atypical 

parameter (τ ). There is also decision variability (κr), which 
indicates the variability of responses when an individual 
makes a motor response.

We found a significant group difference in initial 
resources (two-sample t-test, t(78) = 2.321, p = 0.023, 
Cohen’s d = 0.519). Such average memory resources allo-
cated to an item inevitably decrease as set size increases. 
Lower initial resources lead to significantly lower amounts 
of resources when set size is low (Fig. 4). There were no 
statistical differences in decay exponent (t(78) = 0.751, p = 
0.455, Cohen’s d = 0.168), resource allocation variabil-
ity (t(78) = 0.332, p = 0.741, Cohen’s d = 0.074). We also 
observed a significant group difference in choice variabil-
ity (t(78) = 2.401, p = 0.018, Cohen’s d = 0.537). The higher 
choice variability may reveal more lapses or compulsivity 
in making motor responses in the AAD group. The analy-
sis of the fitted parameters of the VP model suggests that 
the lower amount of resources and the higher variability in 
choice execution are the main determinants accounting for 
the worse VWM performance in the AAD group.

Estimated memory resources associated with 
anxiety severity

Next, we seek to understand the functional role of estimated 
initial resource and choice variability. It remains unclear 
whether the computational modeling can capture the group-
level differences or individual differences in anxiety symp-
toms. We found that the initial resource estimates (Pearson’s 
r = −0.463, p = 0.0098) rather than choice variability (Pear-
son’s r = 0.092 p = 0.629) can predict the individual anxiety 

Fig. 3 The variable precision model. Please see the mathematical 
details of all 14 models in Supplementary Note 1. A Given a fixed 
amount of total the average resources (J1) allocated to an item (J) 
decrease as a power function (decay parameter as α) of the number (N) 
of total items. B The actual resources allocated to an item (J) follow 
a Gamma distribution (Gamma(J, τ)) with the mean (J) derived in 
Panel A and the variance τ . The resources determine the width of the 

von Mises distribution (V W (0, Φ(J))) of the sensory measurement 
m given the input stimulus s. Here, Φ is a transformation function that 
converts the resource variable J  into the precision parameter of the 
von Mises function. C Given the sensory measurement m, the output 
choice is ŝ. The variability is determined by the choice variability κr

. The variable precision model assumes continuous memory sources 
and an infinite number of items that can be held in memory
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Fig. 3 the VP model) and the AAD group has apparently 
fewer resources. In addition, we specifically emphasize 
that, although superficially similar, memory resources and 
memory capacity play very different roles in cognitive com-
putation in visual working memory. For example, as set 
size increases, the average resources allocated to each item 
decrease (Fig. 4A). Fewer memory resources lead to more 
imprecise processing of individual items. Instead, memory 
capacity indicates the maximum number of items that can 
be encoded in memory. If the set size exceeds the memory 
capacity, some items will not be encoded at all, and color 
responses to those items should be completely random. 
Only through model comparisons and parameter analyses 
can we distinguish these theoretically differentiable cogni-
tive constructs.

We emphasize that memory resources and capacity, two 
concepts that are easily intermingled in previous studies, are 
independent within the framework of the VP model. Sup-
pose an observer has a total of 8 units of memory resources 
(a continuous quantity) and a fixed capacity of 4 items. 
When 3 items are presented, each item receives 8/3 units 
of resources. When 5 items are presented, the resources are 

VWM performance in AAD. Working memory deficits are 
widespread in almost all psychiatric disorders, including 
schizophrenia (Forbes et al., 2009; Zhao et al., 2021), major 
depressive disorder (Rose & Ebmeier, 2006), and children 
with attention-deficit/hyperactivity disorder (Martinussen & 
Tannock, 2006) etc. Despite the widely documented defi-
cits in working memory, the etiological mechanisms remain 
elusive. This may be due to the lack of a comprehensive 
understanding of the processes underlying VWM even in 
basic science. In recent years, there has been a rapid concep-
tual shift regarding to the mechanisms of VWM. Early work 
postulated VWM as discrete memory slots (e.g., magic num-
ber 7) (Luck & Vogel, 1997; Zhang & Luck, 2008). Recent 
findings, however, challenge this view and instead propose 
that memory resources should be formulated as continuous 
quantities (Bays & Husain, 2008; Ma et al., 2014). Despite 
the current debate in basic VWM research, we took an unbi-
ased approach and thoroughly compared several influential 
computational models representing both the discrete-chunk 
and the continuous-quantity theories. We can safely con-
clude that, at least in our data, memory resources appear 
in a continuous form (see Fig. 2 model comparisons and 

Fig. 4 Parameter analyses of the modeling results and symptomology 
correlations. A-E Parameter analyses of the modeling results. The 
memory resource functions reveal that both groups use less average 
memory resources as the set size increases. However, the AAD group 
exhibits fewer initial resources (Panel B). No group differences are 
observed in the decay exponent (Panel C), resource allocation vari-
ability (Panel D). The AAD group shows a higher choice variability 
(Panel E). The shaded area in panel A, and the error bars in panels B-E 

represent the standard errors across subjects. F-I Symptomology cor-
relations. Individual anxiety scores in the AAD group are correlated 
with estimated initial resources (panel F) but not with choice variabil-
ity (panel G) from the VP model in. There are no significant correla-
tions between initial resources (panel H) and choice variability (panel 
I) with anxiety scores in the HC group. The shaded areas represent the 
95% confidence intervals of the correlation lines
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expanded to include complex span tasks, which impose 
additional cognitive demands, and dynamic span tasks, 
which require online updating of working memory content. 
A meta-analysis of all simple, complex, and dynamic span 
tasks provides evidence for the working memory deficits in 
people with anxiety disorders (Moran, 2016).

Here, we advocate a paradigm shift from conventional 
clinical tests to experimental paradigms whose underlying 
computational processes have been clearly defined. For 
example, the delay-estimation task is a classic VWM task 
for which the process models have been extensively studied. 
The process models can help to disentangle the underlying 
components and to provide a more mechanistic understand-
ing of cognitive deficits in psychiatric disorders. Here, 
we use the process model—variable precision model—to 
decompose the VWM process into four factors: memory 
resources, memory capacity, resource allocation variabil-
ity, and choice variability. Memory resources and memory 
capacity have long been proposed as the potential factors 
contributing to anxiety-related VWM decline. Resource 
allocation variability indicates the extent to which memory 
resources can be optimally allocated across items and trials. 
Choice variability indicates the amount of noise in the deci-
sion or motor execution phase. Here the finding of reduced 
memory resources directly supports the long-standing 
hypothesis that anxiety constrains memory resources. More 
importantly, our analyses here also quantified and compared 
other factors. The results show that they are unlikely to 
be critical factors contributing to VWM decline at least in 
our paradigm. This is useful because the same framework 
applies to different forms of psychopathology. For example, 
we have found that resource allocation variability is the 
main contributor to VWM deficits in schizophrenia (Zhao 
et al., 2021). In summary, future computational psychiatric 
research should consider including more tasks whose under-
lying processes are relatively well understood.

Group differences when tested multiple targets

In this study we only observed the group difference at low 
set size levels (i.e., 1/3) rather than high set size levels (i.e., 
6/8). The lack of group differences for the high set size con-
ditions may be because of floor performance (i.e., a lower 
CSD indicates better performance). However, we had to 
collect the data for floor performance because it is critical 
for model fitting. It is possible that the group differences 
emerge when multiple targets rather than a single target are 
cued for recall. In that scenario, participants are asked to 
sequentially reproduce the colors of multiple targets. The 
memory and recall of sequences have recently become a 
focal contention in both human (Fan et al., 2021, 2024) and 
monkey studies (Tian et al., 2024; Xie et al., 2022). While 

distributed among a maximum of 4 items, with each receiv-
ing 8/4 = 2 units, while the fifth item receives none. If the 
fifth item is probed, the observer must guess its color ran-
domly. Now, consider another observer with a larger total 
amount of resources (9, 10, or 20 units, etc.). Regardless 
of the total amount available, resources can only be allo-
cated to a maximum of 4 items (i.e., defined by capacity), 
always leaving at least one item without resources. Thus, 
capacity determines the maximum number of items that can 
receive memory resources, while memory resources define 
the amount distributed among them.

In addition to the issues regarding whether memory 
resources are discrete or continuous, and whether a fixed 
capacity exists, we also considered the potential influence of 
SE in VWM. SE refers to the phenomenon in which partici-
pants erroneously recall the color of an uncued item rather 
than the cued target. SE has been suggested as a significant 
source of error, separate from pure encoding failures (Bays, 
2016). However, in our data, we found no significant evi-
dence supporting the presence of SE, nor did it contribute to 
the behavioral group differences. This result has important 
implications for constraining future computational models.

An interesting aspect of our findings is that there is no 
qualitative difference between the groups in terms of the 
best-fitting model. This suggests that the behavioral dif-
ferences observed between groups are primarily driven by 
quantitative differences in certain model parameters, rather 
than the use of distinct VWM processing models. These 
results also highlight the challenges in identifying specific 
cognitive deficits in adolescents with atypical development 
(AAD).

Unveiling the mechanisms

The conventional view that patients with anxiety disorders 
have reduced memory capacity is mostly derived from 
directly measured behavioral results on memory span tasks. 
For example, the most commonly used digit span task asks 
subjects to recall a list of digits in the same or reversed 
order. In this scenario, the memory span is quantified as the 
average number of items correctly recalled or as the longest 
list that can be perfectly recalled (Conway et al., 2005). The 
span task has been widely used in clinical measurement, in 
part because of its effectiveness and validity. However, the 
definition of memory span used here is descriptive of per-
formance rather than mechanistic interpretations. A memory 
span seems to suggest that one can only encode a certain 
number of digits. However, it is also possible that these 
digits are encoded into memory, but with fewer resources 
(i.e., low memory precision). The computational modeling 
approach developed in basic VWM research can help disen-
tangle these possibilities. Recently, the span tasks have been 
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Limitations and future directions

Our study certainly has several limitations that can be 
addressed in future research. First, one of the advantages 
of our work is that we included clinical patients who were 
strictly diagnosed by experts. However, under the ICD-10 
framework, anxiety disorder in adolescents is considered as 
a unified concept that includes all related subtypes, includ-
ing social anxiety disorder, generalized anxiety disorder, 
and so on. It is intriguing to investigate the computational 
mechanisms underlying working memory dysfunction in 
different forms of anxiety disorders. Second, in this study, 
we deliberately recruited the adolescents who had only anxi-
ety but not the comorbidity with depression. Our aim here is 
to minimize the potential confounding effect of depression. 
However, this manipulation also makes it difficult to gener-
alize our results to more realistic cases, as the comorbidity 
of anxiety and depression is common in real life. Investigat-
ing the effects of comorbid depression on cognitive deficits 
in AAD will be a promising future direction. Third, anxiety 
is typically characterized by two dimensions: worry/appre-
hension and arousal/emotionality (Nitschke et al., 2001). It 
remains unclear how these two dimensions are manifested 
in working memory deficits. Fourth, the ultimate goal of 
computational psychiatry is to identify unique behavioral 
or neural markers to aid in therapy. Here, we identify the 
memory resources for low set size conditions as a key deter-
minant of the memory deficits in AAD. Expanding memory 
resources through intervention may be a useful way to alle-
viate anxiety. Finally, due to the difficulty of administering 
behavioral tests in the hospital setting, we expect future 
studies to increase the sample size and test more VWM 
tasks and conditions to further validate the reduced-resource 
hypothesis of anxiety in adolescents.

Conclusions

In conclusion, this study assessed the VWM performance of 
a clinically diagnosed AAD group and a HC group using the 
classic delay-estimation task. The results of the study demon-
strate that both groups employed the same observer model—
the variable precision model. Nonetheless, the AAD group 
generally had reduced memory resources. What’s more, esti-
mated memory resources served as a predictor of self-reported 
anxiety symptom severity. Our results provide a parsimonious 
explanation for the atypical VWM performance in AAD and 
have strong implications for future treatments, such as cogni-
tive-behavioral therapy, for anxiety disorders.

Supplementary Information The online version contains 
supplementary material available at  h t t p  s : /  / d o i  . o  r g /  1 0 . 1  0 0 7  / s 1  2 1 4 4 - 0 
2 5 - 0 7 9 0 7 - 8.

this paradigm is intriguing and offers new insights, it also 
presents challenges in terms of behavioral modeling. Spe-
cifically, how to model the interference effects between 
sequentially presented items and the associated memory 
retrieval processes remains an open question. Future studies 
may build formal quantitative models of sequence memory 
and learning at both behavioral and neural levels.

Clinical implications of reduced memory resources 
in AAD

Assessing working memory resources is of significant 
importance in the adjunctive diagnosis of adolescent anxi-
ety disorders. Adolescents are at a critical stage of cognitive 
and emotional development (Steinberg, 2005), and those 
with anxiety disorders typically exhibit weaker emotional 
regulation when faced with stress and emotional challenges 
(Sackl-Pammer et al., 2019; Schafer et al., 2017). These 
patients often struggle to cope effectively with emotional 
fluctuations, manifesting symptoms such as emotional insta-
bility or an exaggerated response to threats. The atypical 
cognitive control abilities may stem from fewer cognitive 
resources. However, these features are often misconstrued 
as normal adolescent behavior, thereby interfering with 
clinical diagnosis (Beesdo-Baum & Knappe, 2012). Our 
study demonstrates that a reduction in working memory 
resources is a primary mechanism underlying working 
memory deficits in adolescents with anxiety disorders, and 
this reduction can predict the severity of anxiety symptoms. 
By quantifying working memory resources, clinicians can 
more accurately diagnose adolescent anxiety and assess 
symptom severity.

Our evaluation of working memory resources provides a 
key foundation for individualized therapeutic approaches. 
Cognitive Behavioral Therapy (CBT) has been shown to 
be effective for AAD, because it improves emotional reg-
ulation and coping strategies by identifying and modify-
ing negative thought patterns (Kendall & Peterman, 2015; 
Suveg et al., 2009). However, anxiety symptoms are not 
only related to negative thoughts and emotional reactions, 
but are also closely tied to limitations in working memory 
function (Kendall & Peterman, 2015). By assessing the 
working memory resources of AAD, therapists can identify 
cognitive bottlenecks and adjust CBT strategies accord-
ingly. For example, for patients with limited working mem-
ory resources, working memory training can be integrated 
into CBT techniques such as emotional exposure or cogni-
tive restructuring, enhancing the patient's emotional coping 
abilities (Wang et al., 2023).
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