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Abstract

Depression is a prevalent mental disorder, and early detection and diagnosis are cru-

cial for its prevention and treatment. Speech-based depression detection represents

an efficient and convenient approach within the current landscape of computer-aided

detection methods. However, challenges remain in effectively and reliably extract-

ing features and classifying speech patterns to distinguish individuals with depression

from those without. This paper introduces an audio feature set for depression anal-

ysis, referred to as SJTU-LWDLab DACD. Based on this feature set, we propose a

novel method for identifying patients with depression using summed graph convolu-

tional networks to mitigate inaccuracies that arise from the loss of spatial features,

such as height and depth, during the structured fusion of multiple depression audio

features. Experimental results demonstrate that the accuracy of depression recogni-

tion in speech can reach 92.4%. The method proposed in this paper provides objective

indicators and a foundation for the auxiliary identification of depression.
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INTRODUCTION

According to data from the World Health Organization in 2024,

approximately 3.8% of the global population suffers from depression,

including 5% of all adults (4% of men and 6% of women) and 5.7%

of adults over 60 years old, with this number increasing annually.

Concurrently, the 2024 China Mental Health Survey reports that the

lifetime prevalence of depressive disorders among Chinese adults is

6.8%, with depression accounting for 3.4%. In China, approximately

95 million people are affected by depression, and around 280,000
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individuals commit suicide each year, of which 40% suffer fromdepres-

sion. Depression not only inflicts significant trauma on individuals

and families but also results in substantial societal loss. Despite its

severe impact, depression is a condition that can be effectively treated

and improved. In clinical practice, pharmacotherapy can facilitate the

recovery of patients with depression. Additionally, various forms of

psychotherapy (such as cognitive behavioral therapy, interpersonal

psychotherapy, behavioral therapy, and psychodynamic therapy) and

physical therapies (such as repetitive transcranial magnetic stimula-

tion) are available.1 Less than half of people affected by depression in

China and less than 10% in many other countries receive treatment.

Themain reasons for these low rates are as follows:

1. For an extended period, depression has beenmisunderstood by the

public, often labeled as “small-minded,” “unable to think clearly,”

and “pretentious,” resulting in insufficient attention to the condi-

tion. In reality, depression is a seriousmooddisorder.Mental illness,

likeotherpsychological disorders, is frequentlynotwell understood

by society. While it is considered normal for individuals with phys-

ical illnesses to seek medical treatment, psychological disorders,

particularly mental illnesses, are often stigmatized as “mentally

abnormal.” The rapid development of society, high work-related

stress, changes in social identity and interpersonal relationships,

and even the impact of physical illnesses can increase the likelihood

of depression. The peak incidence of depression occurs between

the ages of 20 and 60, with adolescents, professionals, menopausal

individuals, and the elderly being particularly vulnerable. Given that

depression affects a broad spectrum of individuals and can lead to

severe consequences, it warrants significant attention.

2. Individuals with depression often hesitate to seek help. They expe-

rience impaired functioning, negative emotional states, decreased

interest in activities, and a lack of motivation to improve their cur-

rent situation. Furthermore, many individuals with depression lack

sufficient knowledge about the condition and are more likely to

conceal their illness and avoid consulting a doctor.

3. There is a lack of relevant resources and limited medical facilities

for mental health care. Due to insufficient attention to men-

tal illness, there is a relative scarcity of financial investment,

as well as professional medical personnel and psychological ser-

vice providers. Additionally, effective screening for depression

poses challenges. Currently, the diagnosis of depression primar-

ily relies on self-report measures and various clinical assessment

tools, which can be subjective and time-consuming, resulting in

inconsistent diagnoses and delayed treatment.

As amedium for individuals to express their thoughts and emotions,

speech has been shown to be associated with neurocognitive dysfunc-

tion in patients with depression.2 Increasingly, global researchers have

begun to use machine learning and deep learning methods to study

the detection of depression through speech, achieving excellent per-

formance in depression detection. Several groups have shown that

speech features are significantly related to the severity of depression

and can be used to distinguish between depressed and nondepressed

individuals.3–5 Vázquez-Romero and Gallardo-Antolín6 discussed the

performance of an automatic depression detection system based

on the ensemble learning of convolutional neural networks (CNNs).

Scherer et al.7 employed a combination of the normalized amplitude

quotient, quasi-open quotient, peak slope, open quotient neural net-

work, and support vector machine (SVM) with a radial basis kernel,

achieving a classification accuracy of 75%. Kwon and Kim8 pro-

posed a divide-and-conquer approach to detect 76 clinically depressed

patients (38 with severe depression and 38 with moderate depres-

sion), as assessed by theMontgomery–AsbergDepressionRating Scale

using speech, achieving an accuracy of 78%. Existing studies indicate

that the speech of depressed patients exhibits the following char-

acteristics: a slower speech rate, more frequent pauses, and longer

pauses.5 Compared with normal individuals, the changes in vocal fea-

tures are diminished, the voice lacks intonation, and the voice sounds

dull, with breath sounds beingmore prominent in the depressed group.

From the perspective of prosodic features, the fundamental frequency

(F0) of patients with depression exhibits minimal changes, including in

bandwidth, amplitude, and energy, indicating that the frequency vari-

ations in the voices of these patients are relatively limited. Spectral

features are also associated with the severity of depression. Stud-

ies have demonstrated that the degree of change in the energy of

the sound spectrum below 500 Hz and in the range of 500−1000 Hz

correlates with the increasing severity of depression. Therefore, the

feature extraction of speech, alongwith the capture of relatively objec-

tive acoustic characteristics that individuals are less likely to conceal

deliberately, will contribute to a deeper understanding of depression.

Despite these groundbreaking research results, the application of

speech-based depression diagnosis in clinical settings remains chal-

lenging due to insufficient accuracy and robustness, as well as a lack

of large clinical data sets for training. In recent years, graph con-

volutional networks (GCNs) have garnered significant attention for

their ability to model graph-structured data by leveraging the under-

lying graph topology.9,10 GCNs have been successfully applied across

various fields, including computer vision, natural language process-

ing, social network analysis, and bioinformatics.11–14 They provide

a powerful framework for modeling graph-structured data and have

demonstrated promising results in a wide range of applications. As

research in this field continues to advance, it is anticipated that GCNs

will play an increasingly important role in diverse areas. Recent stud-

ies have shown the effectiveness of GCNs in depression diagnosis15,16

by analyzing brain imaging data and identifying biomarkers associ-

ated with depression. These biomarkers can be utilized to develop

more accurate and objective diagnostic tools, thereby facilitating ear-

lier intervention and improving patient outcomes. However, there is

currently no research on the application of GCNs in speech-based

depression detection; thus, we aim to employ GCNs to achieve high-

precision and reliable discrimination of depression-related speech

data. The innovations of this paper are as follows:

1. We collected a substantial amount of real speech data related

to depression and created the SJTU-LWDLab DACD data set.

From this data set, we extracted numerous valuable features of
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depression and labeled the features corresponding to patients with

depression and those without depression separately.

2. To address the issue where judgments become inaccurate due to

the loss of spatial features, such as height and depth, following the

structured fusionofmultipledepressionaudio features,wepropose

a depression classification method based on the summation graph

convolutional networks (SGCNs) for this data set. This method

resolves inaccuracies related to the classification of depression

speech caused by pronunciation features,17 vocabulary features,

acoustic features, and background noise spatial features.18

METHODOLOGY

Audio feature extraction

Weused the speech toolkit openSMILE to extract frame-level features

from the original waveform with a frame window size of 25 ms and

a frame interval of 10 ms. We used the extended Geneva Minimalis-

tic Acoustic Parameter Set (eGeMAPS) introduced by Eyben et al.19

to extract frame-level features with 88 dimensions. Since depressed

audio data do not have a satisfactory diversity of linguistic information,

only nonlinguistic acoustic features were extracted. Therefore, the

focus here was on achieving accurate classification by using only audio

sentiment attributes. Several sound components can be employed by

utilizing audio–emotional characteristics. It is crucial to test diverse

feature combinations to identify which ones have a greater relation

with depression, indicated by improved precision and F1 scores.20,21

The selection of speech signals is the basis for the evaluation of reliable

automatic systems for detecting depressive states. In this study, in the

absence of medical and scientific protocols, the most relevant acoustic

featureswere considered todetermine specific changes in speechqual-

ity and to assess the presence of depression. The estimated acoustic

features include:

1. Jitter: We used it to evaluate basal-periodic changes in psychologi-

cal frequency and to indicate the instability of vocal fold oscillatory

patterns. Jitter was estimated by using Praat (whose name derives

from the command form of the Dutch word “praaten,” i.e., “to

speak”).22,23

2. MFCC: Mel-frequency cepstral coefficients (MFCC) is a widely

utilized technique in speech signal processing and audio feature

extraction. In this paper, we conducted experiments employing

MFCC, zero-crossing rate, speech probability, fundamental fre-

quency (F0), and frame energy,24 analyzing the differences in the

vocal characteristics of patients with depression.

3. Derivatives of cepstral coefficients, which are useful to investigate

the properties of the dynamic behavior of the speech signal; and

spectral centroid, which evaluates the modifications of the signal

frequency over time.25

The features we extracted from the real audio files are shown in

Table 1. The collected audio is a doctor’s interview with a patient. In

this paper, byusing theoriginal audio anddifferent concepts inmachine

learning, such as data reassignment, we mitigated the harmful effects

of bias.

Audio feature selection and processing

Our data processing was divided into two steps: the first step was

speaker separation, to extract the audio clips and mark the speakers

(doctors or respondents); the second step was audio separation, to

extract the audio clips of the respondents. If the respondents had mul-

tiple audio clips, they were merged into one clip. We used a total of

1135 actual patient samples, including 588 depressed and 547 nonde-

pressed patients, with a total duration of 106 h. All audio data come

from the relevant affiliated hospitals of Shanghai Jiao Tong Univer-

sity. Theywere completed in stages by doctors duringworking hours in

Chinese hospitals. All patients provided written informed consent and

were compensated by a certain amount.

We extracted features in two stages: frequency domain feature

extraction and time domain feature extraction. The frequency domain

feature extraction consisted of a peak frequency, which identifies the

most obvious frequency peaks in the speech spectrogram, correspond-

ing to the main frequencies in the audio signal; an energy spectral

density, which calculates the power spectral density in each frequency

interval and extracts the energy distribution of the frequency bands;

a spectral average, which calculates the average of the whole spectro-

gram that represents the overall spectral characteristics; and a spectral

equalization, which divides the spectrogram into multiple frequency

bands and calculates the energy of each frequency band. Spectral

equalization was used for sound equalization processing. The time

domain feature extraction contained: a short-time over-zero rate that

calculates the number of over-zero points between neighboring audio

samples, which is used to represent the frequency characteristics of

the signal; a short-time energy that calculates the energy of the audio

signal within each time window, which is used to represent the ampli-

tude characteristics of the signal; and a short-time autocorrelation that

calculates the autocorrelation coefficient of the audio signal under

different time delays, which is used to represent the periodicity char-

acteristics of the signal. Finally, the above frequency domain and time

domain features were combined into features and represented by an

unstructured graph network to further learn the characteristics of

depression using the GCNsmodel.

We use both labeled and unlabeled training data when constructing

the graph. Since audio data have different sound and speech features,

speech data using low-level descriptors (LLDs), spectrograms, and so

on were extracted by spectrogram convolution, and then node embed-

dings of the graph were constructed to demonstrate the effectiveness

of our graph approach and that our model is not bound to any partic-

ular embedding. During the audio-to-feature embeddings, each audio

segment was divided into nonoverlapping 960 ms segments. For each

segment, a log-Meier spectrogram was computed using frames with a

length of 25 ms and an overlap of 10 ms, 64 spaced frequency bins,

and log-transforming themagnitude of each bin. This yields a log-Meier
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TABLE 1 Features for audio feature extraction.

Type Name

Energy features Energy contour

Band-energy-ratio RMS energy

Time domain features

Frequency domain features

Equalization of root energy onset time

Autocorrelation

Zero crossing rate

Spectral center of mass

Mel-frequency cepstral coefficients (MFCCs) linear prediction coefficients (LPCs)

CEPSTRAL coefficients

Spectral flatness Spectral flux

Spectral centroid

Peak-to-sidelobe ratio (PSR) of Hilbert envelope of LP residual

Spectral roll-off

Logmel spectrum energy pitch

Harmonic ratio bandwidth

Band-energy-ratio

Delta-spectrummagnitude

Normalized autocorrelation peak strength (NAPS) of zero-frequency filtered signal

Music theory features Detuning

Formants

Sensory features Loudness

Sharpness

Chroma

spectrogram of size 96× 64 as input to the pretrained GCNmodel.We

used the128-dimensional features extracted from the audio to process

each log-Meier spectrogram and averaged over all segments to form a

final vector representation of each audio segment.

Construction of the initial graph

For the graph neural network (GNN) construction of depressed speech

audio files, we generally needed to convert the audio files into graph

structures first, and then use the GCNs to extract features and train

models.25 We extracted valuable features from audio signals, includ-

ing MFCCs, spectrograms, short-time Fourier transforms, and pitch

features. The audio signal is segmented into multiple time windows,

each with a duration of 25 ms, while the frame shift is typically set

between 10 and 15 ms. Each time window represents a frame, and

each frame corresponds to a node. The features of each node consist of

the extracted characteristics from the corresponding frame. Adjacent

frames are connected to capture the temporal relationships between

nodes, and sliding windows are employed to link additional nodes to

the current node. TheMFCC features, along with other long-term fea-

tures (e.g., segment duration and voice activity detection results), are

concatenated into a comprehensive feature vector, thereby integrating

information at different levels before inputting it into the GCNmodel.

Assuming that the audio is divided intoN frames, there will beN nodes

in the graph, and each node V contains the audio feature vector Xi of

the frame. Given the feature vectors Xi and Xj of two nodes Vi and Vj,

the similarity calculation is as S (vi , vj) =
xi⋅xj‖xi‖‖xj‖ . The element A(i, j) of

the adjacent matrix A of the graph can be expressed as:

A (i, j) =

{
1, if S

(
vi , vj

)
≥ 𝜃

0, if S
(
vi , vj

)
< 𝜃

, (1)

where 𝜃 is the hyperparameter with a value of 0.5 threshold. By cal-

culating the feature similarity of depressed speech nodes, a cosine

similarity graph structure is constructed to represent depressed and

nondepressed patients. Considering the real data set scenario, the

speech in this article is divided into only two categories: depressed

and nondepressed, and only for female patients, becausewe found that

more women suffer from depression thanmen.

SGCNs model framework

GCNmessage-passing method can learn expressive representations in

many tasks,26 but it does not work well in depressive speech message-

passing because the sum ofmultiple data sets includes the aggregation

of noise, which interferes with the learning of representations. In this

paper, we chose the most suitable message-passing method for our

task with similar GCNs (SGCNs) and aggregated rich distributional

information in depressive speech classification, where statistical infor-

mation is valued.27 GCN with good performance was designed, and

comprehensive guidance was provided for the design space batch

normalization, culling, activation, aggregation, layer connectivity, pre-

processing layer message passing layer, and postprocessing layer.28,29

The first layer of the SGCNs model is H(1)
= 𝝈(ÂXW(0)

). Among them,
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F IGURE 1 Audio classification framework using summed graph convolutional networks (SGCNs).

X is the node feature matrix of the 0th layer, that is, H(0)
= X. Â

is the normalized adjacency matrix, which acts on the node feature

matrix and aggregates the features of the node and its neighbors. Â =

D̃
−

1

2 ÃD̃
−

1

2 ∈ ℝN×N is the self-loop normalized adjacency matrix, and

Ã = A + I is the original adjacency matrix with self-loop connections

added. D̃ = D + I,X(k−1)
∈ ℝN×D,W(k)

∈ ℝD×D, where D and I are the

degree matrix and the identity matrix, respectively.W(0)
is a learnable

weight matrix, and𝝈 is a nonlinear activation function.

In addition, L2 regularization technology was introduced to control

the similarity between node features, prevent features from gathering

toward the center of the space, and alleviate the smoothing problem.

The final SGCNmodel is shown in Equation (2):

H(k+1)
= 𝜎

(
ÂH(k)W(k)

)
+ b, (2)

where b is a hyperparameter to prevent overfitting. In this paper, we

only did two classification tasks, extracting a complete representation

from multiple vectors or multiple features to complete the task, so

we used the summation as the OUTPUT function represented as yG =

OUTPUT(H(K+1)
v ∣ v ∈ G) . The loss function is shown in Equation (3):

OSS = −
∑
i∈L

c∑
j=1

Yij ln yG. (3)

Here, Yij is the true labeled value and yG is the model-predicted

value. The SGCN-based depression audio classification framework is

shown in Figure 1. The steps of spectrogram generation were divided

into preprocessing the audio signals, splitting the frames, applying the

window function, performing the Fourier transform, calculating the

power spectral density, and combining the spectrograms. First, pre-

processing of depression and nondepression raw audio signals was

conducted, including loading audio files, sample rate conversion, noise

removal, and audio normalization. The audio signals were then divided

into short frames containing tens to hundreds of milliseconds each,

using a sliding window technique, and a window function was applied

to each frame using a Hamming window to reduce spectral leakage.

Next, a fast Fourier transform (FFT) is applied to theaudio signal in each

window to convert the signal from the time domain to the frequency

domain, and the power spectral density of each window is obtained by

taking the square of the mode of the complex result obtained from the

FFT. Finally, the power spectral densities of all windows are arranged in

chronological order to form a spectrogram.

Fourier transform of graph structure audio features

Weutilized graph frequencies to represent node-related data, employ-

ing the eigenvectors and eigenvalues of the graph’s Laplacian matrix

as basis functions and frequencies. Spectral graph convolution lever-

ages the spectral information of the graph to capture the relationships

among nodes, thereby enhancing the model’s capacity to learn graph

structures. By applying the Fourier transform to the time series sig-

nal, we extracted time-domain features, which were subsequently

integrated with the graph structure. The Fourier transform in the

continuous domain is defined as:

F (𝝎) =  [f (t)] = ∫ f (t) e−i𝜔tdt. (4)
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In the equation above, f(t) is the integral of the signal and e−i𝜔t is the

basis function, which satisfies:

𝚫 e−i𝜔t =
𝜕2

𝜕t2
e−i𝜔t = −𝜔2e−i𝜔t. (5)

The 𝚫 is the Laplacian operator, that is, a second-order differential

operator in n-dimensional Euclidean space 𝚫f = 𝛁2 f, which is a trans-

formation of the function f. We transfer the Fourier transform to the

graph structure. With the Laplacian matrix, we only need to calculate

its eigenvector. Therefore, as long as the eigenfunction e−i𝜔t of the

Laplacian operator ismapped to the eigenvector of the graph Laplacian

matrix to solve the eigenvector, we can get the Fourier transform on

the graph as follows:

F (𝝀l) = f̂ (𝝀l) =
N∑
i=1

f (i) ul (i) , (6)

where f is the transformation of the nodes on the graph, such as return-

ing the node embedding, f(i) corresponds one-to-one to the nodes on

the graph, and ul(i) represents the ith component of the lth eigenvec-

tor. In other words, the graph Fourier transform of node embedding

f(i) under eigenvalue 𝝀l is the inner product operation with the eigen-

vector ul corresponding to 𝝀l. Using matrix multiplication, the Fourier

transform on the graph is generalized to amatrix form:

⎛⎜⎜⎜⎜⎜⎝

f̂ (𝝀1)

f̂ (𝝀2)

⋮

f̂(𝝀N)

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

u1 (1) u1 (2) … u1 (N)

u2 (1) u2 (2) … u2 (N)

⋮ ⋮ ⋱ ⋮

uN (1) uN (2) … uN (N)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

f (1)

f (2)

⋮

f (N)

⎞⎟⎟⎟⎟⎟⎠
. (7)

That is, the matrix form of the Fourier transform of f on the graph

is: f̂ = U⊤ f. In short, given the input audio feature node embedding f,

multiplying it with U⊤ on the left can get the output embedding f̂ after

the Fourier transform on the graph.

SGCNs classification

Sun and other related researchers used GNNs to capture the rela-

tionship between the various segments of the speaker’s speech in

the conversation for speech emotion classification.30,31 Figueredo and

Wolf regarded each audio channel as a node and built a speech graph

for speech enhancement tasks.32 GNN is also used to fuse informa-

tion from multiple heterogeneous modalities.33 From these studies,

we can see that graph structure learning using speech signal repre-

sentation has matured. Unlike previous studies, our implementation

regards each audio sample as a graph node and directly models the

time step as a node or edge in the graph structure to capture the timing

characteristics.

Our goal is to use the SGCNs method to classify patients into

depression patients and healthy people. In this paper, we use random

forest, SVM,Gaussianmixturemodel, and naive Bayes to conduct com-

parative studies.34–37 The comparison verifies the effectiveness and

reliability of our method. Our data for each patient were collected

in interviews conducted by trained doctors and manually labeled into

three categories: the first category of responses to all questions, with

long question-and-answer interview durations; the second category of

the initial part of each question, whichwas open-ended and asked each

volunteer to respond subjectively according to his experience, feelings,

and methods; and the third category of the end of each question, by

extracting the last 5 s of the question and then cascading them to pre-

pare a sample file. We extracted multiple features from the obtained

speech samples to learn classification using GNNs. For each node in

the graph, first,weobtained somedata: x1,…, xl , xl+1,…, xn∈ Rp, and the

labels of the first l points: y1,…, yl ∈ 1..C. Then, we defined the initial

labelmatrixY ∈ Rn×C , withYlm = 1 if xl has label l = m and0otherwise.

This process can be iterated several times, with each iteration updating

the features of that node by aggregating the features of its neighbors.

DATA AND RESULTS

Data sets

All of our experiments use actual data from patients and healthy

individuals with a history of depression diagnosed by a medical pro-

fessional in a hospital. The interview time for each individual varies

from 10 min to several hours, and each patient is manually labeled.

According to the survey, our data set is currently the only and largest

voice data set on depression in women in the world. We named it the

Depression Audio Consultation Dataset from Li Weidong Laboratory,

Shanghai Jiao Tong University (SJTU-LWDLabDACD).

Depression, Anxiety, and Stress in the Context of Conversational

Agents-Wizard ofOz (DAIC-WoZ) is a data set for the study of emotion

and mental health. It was developed in collaboration with the National

Institute ofMental Health (NIMH)Data Archive and the Technical Uni-

versity of Denmark. The DAIC-WoZ data set is a publicly available

English-language depression data set containing recordings and tran-

scripts of 142participants, such as the patient’s age and gender, each of

whomwas labeledwith a Patient HealthQuestionnaire (PHQ)-8 score.

The PHQ-8 questionnaire is a popular depression screening question-

naire, and participants with a PHQ-8 score greater than or equal to

10 are considered depressed. The DAIC-WoZ data set consists of a

training set (30 depressed and 77 nondepressed patients), a devel-

opmental set (12 depressed and 23 nondepressed patients), and an

unpublished test set. Before the interview, each participant completed

a psychosis questionnaire (PHQ-8) fromwhich a binary truth classifica-

tion (depression, nondepression) was derived. Each patient was asked

to answer a series of questions that addressed their emotional state,

depression, anxiety, and other mental health issues. Related studies on

using thePHQquestionnaire to screendepression canbe found inRefs.

38 and 39.

Experimental settings

Our experiment was divided into three parts. The first part was to sep-

arate the conversation and then convert the segments into text data
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 7

using a third-party automatic speech recognition tool. The text is ana-

lyzed for the respondent’s sociological attributes and questionnaire

results, which include speaker number, start time stamp, text, and end

time stamp. The sampling rate of the audio was 16,000 Hz for resid-

ual blocks for frame-level feature extraction and 5 ms per frame for

long short-termmemory (LSTM) for contextual information extraction,

and all segments were concatenated to the complete audio. The sec-

ond part extracts useful feature information from the audio signal to

achieve the classification task, and these features containMFCC, delta

features, pitch, and so on. In the field of audio processing, multiple fea-

tures are fused and compared separately using multiple classifiers and

our proposed SGCNs classifier method. In the third part, we compared

the audio features of depressed patients from the DAIC-WoZ data set

andour owndata set, and illustrated the differences of patient features

between the two data sets.

Evaluation metrics

This study employed precision, recall, F1-score, and the area under the

ROC curve (AUC) asmetrics to evaluatemodel performance. Precision

denotes the proportion of accurately identified depressed individuals

among all samples, thus reflecting themodel’s accuracy. Recall refers to

the ratio of true depression samples detected by the model compared

to the actual depression samples, reflecting the model’s sensitivity.

The F1-score represents the harmonic mean of precision and recall,

demonstrating the balance between these two metrics and reflecting

the robustness of the model. AUC serves as an additional indicator

of model performance and robustness, with larger AUC values indi-

cating superior model performance and robustness. Additionally, we

performed a statistical analysis of data samples from patients with

depression and nondepressed individuals, calculating metrics such as

mean, median, standard deviation, and p-value. To assess whether sig-

nificant differences exist between the samples, we conducted a t-test

comparing the data from patients with depression and nondepressed

individuals.

Statistics of sociological attribute features

Because of the lack of expressive power of LLD features or socio-

logical attribute features alone, this paper adopted a combination of

two approaches for depression and nondepression classification. In

the experiment, we analyzed the data of sociological attributes of the

interview of depression, including age, educational background, job,

marital status, place of birth, alcohol and drug use, kinship relation-

ship, life stress, and effect size of sexual abuse. Our research has found

that four social attributes, drug, alcohol, mania, and social life, have a

great impact on depression. The statistical results of the distribution

of these attributes are shown in Figure 2 (the data can be found in

SupplementaryMaterial).

Our experimental subjects were females 30–60 years old. There

are 11 categories of educational background: uneducated, education

TABLE 2 Statistics of social attributes of depressed (D) patients
and nondepressed (ND) patients.

Social

attributes Label

Average

value

Median

values

Standard

deviation p-value

Age ND

Da

50.3

51.1

51

52

5.7

5.7

0.018

Education ND

D

5.4

4.9

5

4

2

2.3

0.065

Marriage

status

ND

D

1.41

1.37

1

1

0.95

0.91

0.75

Work

status

ND

D

2.6

3.6

1

4

2

2.2

0

aOnly including 40–60 years old.

kindergarten, primary school, junior high school, high school, spe-

cialist/technical school, adult/radio and television education/technical

school and colleges, undergraduate, master’s degree, and doctoral

degree. There are five categories of marital status, namely, married,

separated, divorced, widowed, and unmarried. There are eight cate-

gories of work status, which are gainfully employed, temporarily laid

off or on sick leave, unemployed, looking for work, retired from gain-

ful employment, permanently disabled, homemaker/home-based, in

school, and others. To determine whether there is a significant differ-

ence between the depressed and nondepressed subjects, we tested

the statistical significance of the difference between the two groups

separately through statistical analysis. The statistical distribution is

listed in Table 2, and the specific statistical histograms are shown in

Figure 3.

The total number of depressed and nondepressed subjects was

1135. To compare whether there is a significant difference between

the means of the two independent samples of depressed and non-

depressed, we did the unpaired t-test and calculated the p-value.

From Table 2, the average age of individuals experiencing depres-

sion within the 30–60 years age range is 51.1 years. There are

11 categories of educational attainment, with an average depres-

sion rate of 4.9%. Additionally, there are five categories of mari-

tal status, which show an average depression rate of 1.37%. Fur-

thermore, the analysis includes eight categories of employment,

with an average depression rate of 3.6%. Our further statistical

analysis indicates that divorced individuals and those with lower

levels of education are at a higher risk of experiencing depres-

sion.

Comparison of experimental results for classifier
methods

In this experiment, we used different methods to perform classifica-

tion verification on multiple feature sets, using accuracy, sensitivity,

and specificity as evaluation indicators.

First, we screened the data for individuals by selecting those indi-

viduals with all the labeling, physiological, and behavioral information
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8 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 2 Results of statistical analysis on the answers to the PHQ questionnaire for patients with depression and those without depression.
Panels (A)−(D) show the distribution of depression and those without depression in terms of drug, alcohol, mania, and social life attributes,
respectively.

and features for further processing. Then, in the feature set processing

phase, we took three steps:

1. Processing vacant data: If more than half of the data in a channel

within the feature set was missing, the channel was deleted. If less

than half of the data in a row was missing, the vacancies were filled

with the average of the other channels in that row.

2. Feature channel pooling: Theweights of different channels accumu-

lated from high to low until the sum of weights reached a threshold

of0.5, and then took theaverageof theaccumulated channel values.

3. Filtering outliers: Data with absolute values greater than 100 were

filtered out and replacedwith themedian of the feature.

When constructing the adjacency matrix, we first screened the fea-

ture information and removed information irrelevant to the task, such

as the number of patients and speech duration, to reduce interference.

The SGCNs model parameters were as follows: GraphConvolution1—

input feature length; GraphConvolution2—32 hidden nodes;

GraphConvolution3—16 hidden nodes; GraphConvolution4—4

hidden nodes; Dropout—0.5; Output layer—softmax. The learning

rate was set to 0.001, and the Adam optimizer was used. We used

random forest (RF), SVM, CNN, BiLSTM, and our method to conduct

comparative experiments on different feature sets, among which

RF was performed 200 times. The experimental results are shown

in Table 3. Based on the experimental analysis, since the eGeMAPS

feature is a set of audio features for emotion and gender recogni-

tion, it has certain advantages in audio feature classification tasks.

The eGeMAPS features cover many aspects of audio information,

including pitch, speaking rate, sound intensity, sound quality, and so

on, thus providing a comprehensive description of the audio, and

they are relatively insensitive to changes in factors such as noise and

room acoustics. This makes them suitable for complex real-world

voice-recording environments. eGeMAPS features can also be used

for gender recognition. They contain gender-related audio features,

such as fundamental frequency, resonance peaks, and so on, which can

effectively distinguish between male and female voices. Next, we only

used the eGeMaps audio features of depressed speech, and verified

the classification effect of depression and nondepression features

using SVM and CNN classifiers, respectively.

From the experimental results in Table 3, it can be seen that the

classification effect using only audio features cannot achieve the ideal

effect. Since low-level audio features have a significant impact on
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 9

F IGURE 3 Statistical analysis of (A) age, (B) education, (C) marriage status, and (D) work status of depressed and nondepressed patients.

TABLE 3 Comparison of different classificationmethods: RF, SVM, CNN, BiLSTM, and SGCNs.

Features Feature dimension Classifier Accuracy Sensitivity Specificity

MFCC 13 RF 55.6 61.7 54.9

Prosody 103 RF 71.1 72.6 69.5

Phonation 29 RF 69.2 69.1 69.4

Phonological 108 RF 70.8 69 72.7

EGeMaps 88 RF 71 71.1 70.9

SVM 67 60.0 75.0

CNN 59 53.0 65.0

ComParE 6373 73.9 73.3 74.5

SJTU-LWDLabDACD - BiLSTM 89.2 89.0 90.6

- SGCNs 92.4 91.1 93.7

Note: The values in bold highlight the results for themodel of this paper.

Abbreviations: BiLSTM, bi-directional long short-term memory; CNN, convolutional neural network; MFCC, mel-frequency cepstral coefficient; RF, random

forest; SGCN, summed graph convolutional network; SJTU-LWDLab DACD, Depression Audio Consultation Dataset from Li Weidong Laboratory, Shanghai

Jiao Tong University; SVM, support vector machine.

distinguishingdepression fromnondepression,weextracted some low-

level features from the audio signals of the real data set. These features

contain basic information such as pitch, volume, and spectrum, which

are used to compare the classification effects of nongraph-structured

data and graph-structured data. From the experimental comparison, it

can be seen that our model has the best effect. To verify which spe-

cific features impact depression, we conducted a statistical analysis of

the input high-dimensional audio features and found that the best fea-

ture combination is alcohol,mania, and social life. Theother differences

were not obvious, and the experiment was relatively random. At the

same time, we selected two feature sets, eGeMAPS and ComParE, for

confusionexperiments. Theexperimental results are shown inFigure4.

As can be seen from Figure 4A, the predicted true positive (TP) and

true negative (TN) are both very high. As can be seen from the ROC
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10 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 4 Experiments on summed graph convolutional networks (SGCNs) on the ComParE feature set: (A) the confusionmatrix and (B) the
ROC curve of ComParE features.

TABLE 4 Accuracy values for depressed and nondepressed patients in the public data set, respectively.

Data set Method Feature Model Accuracy (D/ND)

DAIC−WOZ LSTM-CNNs-CRF40

DRNN41

Deep learning–based42

Ours (SGCNs)

Mel-spectrogram

MFCC

MFCC, spectrogram

MFCC

CNN-LSTM

RNN

CNN

GCN

52/70

86/85

87/82

91/92

Note: The values in bold highlight the results for themodel of this paper.

Abbreviations: CNN, convolutional neural network; CRF, conditional random field; D, depressed; DAIC–WOZ,Depression, Anxiety, and Stress in the Context

of Conversational Agents-Wizard of Oz; DRNN, deep recurrent neural network; GCN, graph convolutional network; LSTM, long short-termmemory;MFCC,

mel-frequency cepstral coefficient; ND, nondepressed; RNN, recurrent neural network; SGCN, summed graph convolutional network.

curve in Figure 4B, the TP rate can reachmore than 90%. To ensure the

model’s reliability and make full use of the audio data, we performed

cross-validation 10 times. The division of the data set was random and

uniform.As canbe seen fromFigure 4B, ourROCcurve area is between

91% and 93%, indicating that our method has very good reliability and

robustness in different audio feature sets.

Experimental comparison with public data sets

In addition, we conducted a comparison experiment between English-

speaking depressed patients andChinese-speaking depressed patients

using the SJTU-LWDLab DACD data set and the public data set DAIC-

WOZ. The comparison of our modeling approach with other method

approaches on theDAIC-WOZdata set is shown in Table 4. Experimen-

tal results indicate that the audio features of the real patients and the

public data set patients are different, and the classification accuracy

of our method on the public data set for depressed and nondepressed

patients exceeds that of the other model methods, which fully proves

the validity and accuracy of our method.

DISCUSSION

This study had several notable shortcomings. It did not fully con-

sider and control for confounding variables, identify covariates that

are strongly correlated with depression, or achieve precise matching

between the experimental and control groups. This oversight is signif-

icant, as depression is a complex mood disorder with a multifaceted

etiology, influenced by both biological and social factors. Although the

sample included both male and female participants, the limited size

restricted the possibility of separate analyses for each gender, despite

the known substantial differences in vocal characteristics between

men andwomen. Future studies should account for these vocal charac-

teristics separately for each gender. Additionally, this study primarily

focused on the differences between patients with depression and

healthy individuals. In clinical practice, depression is often misdiag-

nosed as othermental disorders, such as bipolar disorder, complicating

the diagnosis process. Therefore, it is essential to stratify the research

intomore detailed categories and comprehensively examine the role of

voice in predicting depression across different populations, including

individuals with physical illnesses and those with other mental disor-

ders. This approach will facilitate the development of more rigorous

conclusions. Based on the findings herein, this study has established
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 11

that voice possesses a cross-feature predictive effect on depression.

Future research should aim to utilize more effective methods for pro-

cessing high-dimensional data to identify the most salient features

relevant to voice. Enhancing themodel’s generalization capabilities can

be achieved by reducing feature dimensionality.

CONCLUSION

This study gathered a substantial data set of speech recordings from

patients diagnosed with clinical depression, known as the SJTU-

LWDLab DACD data set. Utilizing this data set, we introduced an

innovative speech data classification approach that employs the SGCN

for individual depression identification. This method addressed the

issue of low accuracy in depression detection caused by inadequate

spatial features during the fusion of multiple audio attributes. This

research underscores the importance of speech as a rapid identi-

fication and diagnostic tool for clinical depression. Considering the

findings and limitations of this study, future research could focus on

speech features strongly correlated with depression, enabling more

precise exploration and positioning. Additionally, it is suggested to

implement advanced computational classification algorithms and con-

duct robust repeatability verification to enhance themodel’s accuracy,

generalization capability, and the overall applicability of the results.
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