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Abstract:

Many studies have demonstrated the prominent similarity 
between deep neural networks (DNNs) and human vision. 
However, one recent study (Nguyen et al., 2015) challenged 
this idea and showed that some artificially generated 
adversarial images can successfully ‘fool’ the even most state-
of-the-art DNNs but not human vision. Specifically, DNNs can 
accurately recognize adversarial noise (AN) images but not 
adversarial interference (AI) images, and vice versa in 
humans. In this paper, we aim to use functional magnetic 
resonance imaging (fMRI) to elucidate the neural mechanisms 
that underlie these dissociable behaviors. We measured neural 
responses in the human brain towards regular, AN and AI 
images, and quantify the representational similarity between 
the three types of images in a DNN and in the human brain 
respectively. Results demonstrated that the representational 
similarity in the DNN reflects image similarity more than 
perceptual similarity. We also found that the DNN 
misrepresents low- and middle-level visual features compared 
to human vision. These results offer new insight into the 
development of both human visual models and deep neural 
networks in future work. 
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Introduction 
Deep neural networks (DNNs) have become a 

contention focus in recent years due to its remarkable 
representational power of visual features. Recent research 
has strived to link DNNs to the human visual system 
(Yamins and DiCarlo, 2016). For example, recent fMRI and 
single-unit recording studies have shown that visual features 
in different layers of DNNs can explain the neural responses 
along the ventral and the dorsal cortical pathway in the 
human brain, revealing the consistency between two 
systems in spatiotemporal visual processing (Güçlü and van 
Gerven, 2015;Cichy et al., 2016;Hong et al., 2016;Güçlü 
and van Gerven, 2017;Horikawa and Kamitani, 2017). The 
close links between DNNs and neuroscience suggest that 
modern DNNs not only can quickly approach or even 
surpass behavioral performance of human vision, but also 
bore strong resemblance to the neural representation in the 
brain.  

On the other hand, current DNNs are in general still 
considerably worse than human vision in many aspects, 

revealing some fundamental difference between the two 
systems. One potent example is the artificially generated 
adversarial images that can successfully ‘fool’ the even 
most state-of-the-art DNNs (Fig. 1A). Adversarial noise 
(AN) images look like meaningless noise to humans. DNNs, 
however, classify them into common object categories with 
surprisingly high confidence (Nguyen et al., 2015). On the 
contrary, humans can easily recognize the adversarial 
interference (AI) images generated by adding a small 
amount of noise to the regular (RE) images. But the same 
manipulation severely impairs DNNs’ ability to recognize 
AI images (Szegedy et al., 2013). These intriguing effects 
demonstrate the profound difference between DNNs and 
human vision as same image inputs produce drastically 
distinct perceptual outcomes in the two systems. 

To further improve DNNs to achieve human-level 
performance, we should characterize to what extent the 
visual representation in DNNs approximates to or differs 
from the representation in the human visual system. Past 
research used the images stimuli that generate highly similar 
percepts in both systems and it is therefore not surprising 
that their representations are also found to be similar. Only 
by using the stimuli that cause dissociable perceptual 
outcomes, can we truly elucidate in what aspect the 
representations of the two systems differ. As such, we 
performed a fMRI experiment on three human participants 
and measured the neural response towards the regular and 
the adversarial images. Our aim is to uncover the neural 
mechanisms of the dissociable visual behaviors between 
DNNs and humans when recognizing adversarial images. 

 
Materials and Methods 

Stimuli. We used three types of images: regular, AN, and AI 
images, respectively (Fig. 1A). 40 RE images span 40 
representative object categories. 40 AN images were 
generated based on the RE images using the method 
described in (Nguyen et al., 2015). Briefly, to generate an 
AN image that corresponds to a RE image, we used 
backpropagation method to calculate the gradient of the 
posterior probability of the corresponding class of the RE 
image. We then followed the gradient to increase a chosen 
unit’s activation by adjusting the noise image. Optimization 



 

 

began from the ImageNet mean (plus small Gaussian noise 
to break symmetry) and continued until the DNN confidence 
for the target class reaches 99%.  

The AI images were generated by the similar 
optimization approach that began from the corresponding 
RE images.  

In summary, we used a total of 120 images, 40 for each 
image type. 

 
MRI experiments. The main experiment for each subject 
included two scanning sessions, with 5 runs in each session. 
A scanning run contained 120 stimulus trials and 9 blank 
trials. Within a stimulus trial, a blank and an image (12°×
12°) were alternately presented for 2s. A fixation point (0.2°
×0.2°) was shown at center-of-gaze throughout the entire 
run. A 20s blank period was added to the beginning and the 
end of each run, respectively. Subjects were instructed to 
maintain steady fixation throughout the entire run and press 
buttons to perform an animal recognition task–whether the 
object in an image belongs to animals. In addition, five 
visual regions of interest (i.e., V1-V4, LO) were localized in 
another retinotopic experiment and another functional 
localizer experiment. 
 
Representational similarity analysis. We used the Alexnet 
(Krizhevsky et al., 2012) as our DNN and calculated the 
representational geometry for the three types of images. 
Between every pair of images in a same image type, we 
computed dissimilarities (1 - Spearman’s correlation) of the 
activation of all units in each layer. This yielded a 40 (object 
categories) × 40 representational dissimilarity matrix (RDM) 
for each image type and in each DNN layer. We then 
correlated the RDM of the RE images and the RDM of the 
AN images, the resulted correlation denoted as “RE-AN 

similarity”. Same calculation was repeated to obtain “RE-AI 
similarity”. These analyses were performed for all DNN 
layers (Fig1. B). 

We used the similar method to calculate 
representational similarity between image types in the 
human brain. 300 voxels (100 voxels from each subject) 
were selected in each ROI based on the correlation of 
response patterns towards a same picture across trials. 
Similar “RE-AN similarity” and ”RE-AI similarity” values 
were calculated using the same method described above, 
except that we used voxels instead of artificial neurons 
(Fig1. C). 

 
Results 

For the DNN, the RE and the AN images are 
“perceptual” very similar but vice versa with respect to the 
RE and the AI images, even though the later pair is truly 
more comparable with respect to image features. If the 
representation in the DNN mainly reflects the input visual 
features, the RE-AI similarity will be higher than the RE-
AN similarity since the RE and the AI images are more 
similar in image features. On the contrary, if representation 
in the DNN follows the “perceptual” outcome rather than 
image input, the RE-AN similarity should be higher than the 
RE-AI similarity. 

Result showed that the RE-AI similarity values are 
generally higher than the RE-AN similarity values across 
different layers (t-test, P = 0.0084), indicating that visual 
representation in the DNN is more consistent with image 
input rather than perceptual output (i.e., classification 
labels). The same result occurs in the human visual system, 
which is not surprising given that RE and AI images look 
much more similar than RE and AN images to human 
vision. 

 
Figure 1. A) Image stimuli. Panel A provides a few example regular (RE, upper row) images, the adversarial noise (AN, middle row) 
images and the adversarial interference (AI, bottom row) images respectively. Humans can easily recognize AI but not AN images, 
whereas DNNs can recognize AN images with over 99% confidence but not AI images. B) Representational similarity between three 
types of images in the DNN. C) Representational similarity between three types of images in the human brain. The similarity values and 
errorbars are calculated via bootstrapping using all voxels in a region. Errorbars represent the 95% confidence interval of the correlation 
value. The similarity of responses between RE and AI images are significantly higher than that between RE and AN images in all ROIs (t-
test, P < 0.0001).  



 

 

We are also interested in how representational 
similarity changes across different layers in the DNN and 
regions in the brain. We noticed that the RE-AN similarity 
increases from low- to higher-level layers (Fig1. B) in the 
DNN and decreases from low- to higher-level visual areas in 
the brain (Fig1. C). Presumably humans cannot extract any 
semantic information from the AN images as such the 
neural response in the brain should reflect mostly bottom-up 
processing. The decreasing similarity between the RE and 
the AN images in the brain suggest that two types of images 
share more low- rather than high-level features. If we 
believe this is the ground truth, the opposite trend in the 
DNN reveals that the DNN misses some fundamental 
aspects of hierarchical visual representation. Also, given 
that all brain regions here are believed to process low- or 
middle-level visual features, this result also implies that the 
DNN might not satisfactorily account for some basic visual 
analyses in the human brain, although many computer 
vision studies claim DNNs are capable of doing so. Taken 
together, our results highlight the need for achieving not 
only high performance but also accurate representation in 
future practice of developing DNNs.  
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