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Abstract

Previous theoretical work has shown that noise correlations 
(NC) that have the same sign as signal correlations (SC) limit 
the amount of information encoded in neural population 
responses. A recent fMRI study replicated this finding in 
functional magnetic resonance imaging (fMRI) data (Bejjanki 
et al., 2017). Here, we aim to gain further understanding of 
how NCs between voxels alter the accuracy of multivariate 
pattern classification (MVPC), a popular analysis method in 
fMRI research. In a simulated fMRI orientation experiment, 
voxel responses were simulated using an encoding model and 
then classified using linear discriminant analysis. We 
evaluated two forms of NC: one proportional (i.e., tuning-
compatible NC) to the SC between voxels and the other one 
independent (i.e., tuning-independent NC) of the SC between 
voxels. Surprisingly, our results show that both the tuning-
compatible NCs and the tuning-independent NCs improve 
MVPC accuracy. We show that these results stem from two 
major factors: (1) classifiers can “greedily” select voxels that 
have informative covariance and (2) the SC defined using 
tuning for two orientations is different from the SC defined 
using full orientation tuning curves. Taken together, our 
results provide a theoretical foundation for understanding the 
effect of NC on MVPC in future experimental studies. 
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Noise correlation and neural coding 
 
It has been known that activity of a single neuron depends 
on other neurons and sometimes two neurons exhibit 
correlated activity. In computational neuroscience, the 
correlation between the tuning curves of two units is called 
signal correlation (SC) and the trial-by-trial response 
correlation is called noise correlation (NC). The SC has 
been extensively studied but the signatures of the NC in 
neural coding have not been well characterized. Recent 
multi-unit recording studies and theoretical work have 
examined to what extent NC will improve or impair 
population codes. Existing evidence has indicated that the 
effect of NC depends on many factors, including its 
behavioral relevance (Haefner et al., 2013), the form of 
noise, the sign of NC, and the relationship between NC and 
SC (Averbeck et al., 2006).  
 In a typical perceptual decision making task, previous 
theoretical work usually categorizes neurons into two pools 
whose tuning favor two stimuli respectively (Shadlen et al., 
1996). Under this assumption, any pair of neurons reside 
within the same pool or different pools. Accordingly a NC 

can either have the same or opposite sign of the SC. For 
example, a positive NC between two neurons having a 
positive SC (i.e., two neurons in the same pool) is 
considered as a tuning-compatible NC. The tuning-
compatible NC has been found to be ubiquitous in the brain 
(Gawne & Richmond, 1993; van Kan et al., 1985) and 
detrimental to information encoding (Averbeck et al., 2006). 
This view is elaborated in Figure 1. 
 In a different line of research, fMRI provides 
simultaneous measurement of many voxel responses in the 
brain, and a popular approach to fMRI is multivariate 
pattern classification (MVPC). Despite the tremendous 
success of MVPC in fMRI research, little is known with 
respect to how NCs alter its performance.  
 In this paper, we aim to perform a series of theoretical 
analyses to understand how NCs between voxels in fMRI 
data will impact the performance of MVPC. We focus on 
two forms of NC: one proportional to (i.e., tuning-
compatible NC) and the other independent of SC (i.e., 
tuning-independent NC). Using an orientation encoding 
model, we simulate the trial-by-trial responses of many 
voxels and use the responses to classify two orientations.  
 

 
Figure 1. The two-unit model of population coding. Many 
theoretical studies categorize neurons into two discrete pools. 
The tuning of a pair of units towards two stimuli can therefore be 
represented as two points in a two-dimensional space. We denote 
this type of stimulus tuning as two-point tuning as it only 
considers the tuning of two stimuli in the task. Under this 
assumption, a SC can be either positive (Panel A) or negative 
(Panel D), indicating two units come from the same pool or 
different pools. A NC that has the same sign as the two-point 
tuning degrades decoding (Panel B and F) but improves decoding 
if the sign of a NC is opposite to the two-point tuning (Panel C 
and E). 
	



Simulating noise correlation in fMRI data 

The orientation encoding model. All simulations in this 
paper were performed under a hypothetical experiment: 
classifying orientations 45° and 135° based on multi-voxel 
responses. This is reminiscent of early brain decoding 
investigations (Kamitani & Tong, 2005).  

The orientation encoding model assumes 8 neural 
orientation channels, whose tuning functions are specified 
as positively half-wave rectified cosine functions raised to 
the fifth power: 

gk (s) = [cos(
π
90
(s −ϕk ))]k

5 ,              (1) 

where k indicates the k-th channel defined by the preferred 
orientation φk. Preferred orientations of 8 channels are 
equally spaced between [0, 180°). We further assume that a 
single voxel response fi(s) is the linear combination of all 
orientation channels: 

fi (s) = wkigk (s)
k=1

8

∑ ,                    (2) 

where wki is the connection weight between the k-th 
orientation channel to the i-th voxel. W is given by: 

 wki ~ uniform(0, 3),                    (3) 
Thus the mean of a group of voxel response can be 
represented by f(s) = [fi(s)]. However, empirically measured 

voxel responses are inevitably corrupted by noise. Thus 
trial-by-trial responses of a group of voxels should be: 

b = f(s)+ e ,                                (4) 
where b is estimated beta weights in normal general linear 
model analysis in fMRI and e represents the multivariate 
normal distribution: 

e ~ N(0,Σ) ,                                (5) 
where ∑ is the covariance matrix. 
 
Voxel-wise noise correlations. In computational 
neuroscience, the signal correlation between two units refers 
to the correlation of their tuning curves:  

  
rij

signal = corr( fi(S), f j (S)) ,                     (6) 

where S indicates all possible orientations between [0, π) 
and fi(S) is the tuning curve of the i-th voxel. 
 On the other hand, the noise correlation refers to the 
trial-by-trial covariation between two units and the NC in 
theory is independent of the SC. Empirical recording studies 
found that the NC is usually weakly proportional to the SC.   

As such, two forms of NC are proposed in this model. 
In the first case, the NC is directly related to the SC: 

 
rij

tuning = rij
signal ,                                 (7) 

We denote this type of NC as rij
tuning because it is directly 

related to two voxels’ tuning.  
In the second case, we randomly shuffle the voxel index 

such that the NC is independent of the SC while keeping the 
overall amount of noise in the population constant: 

 
rij

random = rij
signal ,                                 (8) 

where z is a vector of voxel indices with a random order.  
Given the correlation matrix, the covariance matrix can 

be formulated as: 

  

Σ ij =
τ i

2 , i = j

c *τ iτ jrij , i ≠ j

⎧
⎨
⎪

⎩⎪
,                        (9) 

where τi2 is the trial-by-trial response variance of the i-th 
voxel and the NC between voxels i and j is ri, which could 
be either rij

tuning or rij
random. c is the NC coefficient that 

controls the strength of the NC. The key question we focus 
here is how the c value alters MVPC accuracy. 

In addition, we assume all τs follow a normal 
distribution: 

 τ ~ N(u,v) ,                                (10) 
Here, µ and ν represent the mean and the variability of noise 
level across voxels respectively. We set u = 15, v = 6. 
  

 
Figure 2. The impact of tuning-compatible and tuning-
independent NC on the performance of MVPC. Increasing 
both forms of NC improves MVPC performance. Error 
represents the SEM across ten independent simulations. 
	



Simulations. Six levels of the NC coefficient were set from 
0 to 0.99. For each NC coefficient level, we simulated the 
responses of 30 voxels for a total of 2000 trials (1000 trials 
for each orientation). A linear discriminant analysis was 
used to classify orientations based on all 2000 simulated 
trials. Six NC coefficient levels and two types of NC (rij

tuning 

and rij
random) constituted a total of twelve conditions. The 

simulated experiment was repeated 100 times in each 
condition to estimate the reliability of MVPC accuracy. 
Note that in each of 100 simulated experiments, the 
connection weight W was reset and fixed throughout. The 
NC coefficient but not the weight W varied such that 
endowed results at different NC coefficients were directly 
comparable.  
 

Noise correlation improves MVPC accuracy 

We examined how the two forms of NC alter MVPC 
accuracy. We noticed that increasing the amount of a 
tuning-compatible NC improves the MVPC accuracy 
(Figure 2). This result contradicts conventional thinking and 
a recent fMRI study showing that the tuning-compatible NC 
is usually detrimental to information decoding (Bejjanki et 
al., 2017). We also observed that a similar result occurred if 
we increased the amount of tuning-independent NC. This 
result demonstrates that even randomly injecting some 
covariance in fMRI data will improve the performance of 
pattern classification.  

Why do voxel-wise NCs improve MVPC accuracy, 
regardless of whether the NCs are related to the voxel 
tuning or not? We identified two major factors contributing 

to the results and will elaborate them in next two sections.  
 

The distinction between the tuning for two 
stimuli and the tuning curves for all stimuli 

Why have previous studies demonstrated that a tuning-
compatible NC is detrimental for information decoding 
whereas here we show it is beneficial? We call attention to 
the difference between the neuronal responses to two stimuli 
and the full response tuning curves across all possible 
stimuli. In general, a tuning-compatible NC means having 
the same sign of a SC. However, a SC can be two distinct 
cases, as we will show below, and therefore a tuning-
compatible NC should be also considered under two 
circumstances..  

Many previous studies categorize neurons into two 
pools that selectively respond to two stimuli. Any pair of 
neurons can be either in the same pool (i.e., positive SCs) or 
different pools (i.e., negative SCs). We denote the SC in this 
case as two-point SC and the NC that has the same sign of 
this SC as two-point-compatible NC. Figure 1 depicts how a 
NC and a SC in the two-point case jointly determine 
classification performance. Note that under this 
circumstance, a two-point-compatible NC indeed worsens 
classification. 
 However, the SC in our study is defined as the 
correlation between the full tuning curves of two units, not 
just the selective responses for two stimuli. We denote this 
type of SC as full-tuning SC and the NC that has the same 
sign of this SC as full-tuning-compatible NC. Note that 
these two types of NC are dissociable and a full-tuning-
compatible NC, unlike a two-point-compatible NC, can 
either help or hamper MVPC. We use a three-unit model to 
depict this (Figure 3). Units X and Y have very similar 
tuning curves (i.e., a positive full-tuning SC, Figure 3A-B) 
and their full-tuning-compatible NC therefore should also be 
positive. The same holds for units Y and Z. If we attempt to 
classify two stimuli based on responses of X and Y, a full-
tuning-compatible NC is in line with the two-point-
compatible NC and thus worsens the MVPC accuracy 
(Figure 3C). However, if we attempt to classify two stimuli 
based on responses of Y and Z, the response geometry is 
flipped and a positive NC turns to be beneficial in this case 
(Figure 3D). Thus, given the same full-tuning-compatible 
NC, it can be either consistent with or opposite to a two-
point-compatible NC and thus either improves or impairs 
classification.  
 Previous observations (Bejjanki et al.) that a tuning-
compatible NC is detrimental only holds true with respect to 
the two-point-compatible NC; while this case is tractable 
and easy to understand, it is overly simplified since neurons 
usually continuously span a whole feature space. The full 
tuning-compatible NC is a more realistic characterization 
for the case where discrete stimuli are classified from the 
responses of a population with diverse tuning.  
 

A “winner-take-all” mechanism of MVPC 

 
Figure 3. Effects of a full-tuning-compatible NC on decoding. 
Panel A illustrates the tuning curves of three units (X, Y and 
Z) and two stimuli to decode. Since the difference between the 
preferred orientations of X and Y is equal to that of Y and Z, 
the SCs between two pairs of units are equal, as shown in the 
panel B. The SC is positive so the tuning-compatible NC 
should also be positive. In panel B, the straight line is the 
correlation line and the shaded area represents 95% confidence 
interval of the correlation line. Panel C and D illustrate the 
response distributions of two units towards two stimuli. The 
dots with white face color indicate the mean of responses. A 
positive NC impairs the classification using the responses of X 
and Y (Panel C) but promotes the classification using the 
responses of Y and Z (Panel B).  
	



The second factor that contributes to the observed results is 
the winner-take-all operation of a linear discriminant. 
Again, we run a simple three-unit model to illustrate this 
(Figure 4). In the model, units X and Y have a covariance 
beneficial to classification, whereas the covariance of units 
Y and Z is detrimental. If the classification is based on all 
three units, two opposite effects do not “cancel” each other. 
Rather, the performance of classification remains high, 
indicating that the classifier behaves according to a “MAX” 
or “winner-take-all” rule. In other words, the covariance 
structures of a small group of “good” voxels will determine 
the overall accuracy of a linear classifier that can 
characterize and make use of noise covariance structure. 
Thus, as long as a NC creates such structure in a subset of 
voxels, an appropriately designed linear classifier can utilize 
these voxels to achieve better performance. 
 

Conclusion  

We simulated a fMRI experiment and classified two 
orientations based on simulated responses of a population 
voxels. We found that adding noise correlations to the 
population, no matter compatible with signal correlations 
between voxels or not, improves classification accuracy. 
This result at first glance contradicts with previous work 
showing that tuning compatible NC is detrimental for 
information decoding. We show that these results mainly 

stem from two major factors: (1) the distinct definitions of 
tuning for two stimuli and the tuning curves for all stimuli; 
(2) the greedy selection of beneficial covariance by a linear 
discriminant. We contend that NCs in a large population are 
almost guaranteed to be helpful since as long as there exists 
at least one pair of units for which NC is beneficial, a linear 
discriminant can exploit these units to improve 
classification accuracy. Note that these two factors not only 
manifest in the simulation here but also are broadly true 
when considering other neuroscience data (i.e., multi-unit 
neural recordings). Our analyses thus provide insight into 
the nature of MVPC, as well as general principles of neural 
coding. 
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Figure 4. The winner-take-all mechanism of a linear classifier.  
The NC between unit X and Y help the classification for stimuli 
1 and 2 (Panel A) and conversely the NC between Y and Z 
impairs the classification (Panel B). In this case X and Z has no 
significant NC (Panel C). If we classify two stimuli from the 
responses of X and Y, the accuracy is high (black bar in Panel 
D) whereas the accuracy is low if using Y and Z. Interestingly, if 
we use all three units for classification, the two opposite effects 
do not cancel each other and the accuracy is still high. This 
simple model illustrates that a linear classifier behaves like a 
winner-take-all operation - only taking into consideration a few 
informative voxels that can help classifier achieve high 
accuracy.  
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