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Abstract 
It has been well documented that people with schizophrenia 
(PSZ) have deficits in visual working memory (VWM). One 
widely acknowledged explanation is that PSZ has decreased 
working memory capacity compared to healthy control 
subjects (HCS). Here, we leveraged the state-of-the-art 
computational framework – the variable precision (VP) 
framework to disentangle the contributions of different VWM 
components to the atypical behavior observed in PSZ. Using a 
classical delay-estimation VWM task, we found that neither 
the memory resources across different set size levels nor the 
variability at the choice stage were the differences between 
two groups (PSZ vs. HCS). Interestingly, PSZ exhibited 
abnormally larger variability in allocating memory resources 
across items and trials. Our findings challenged the classical 
“limited capacity” account in PSZ and showed that larger 
resource allocation variability was the major determinant of 
the VWM deficits in PSZ, which could only be detected by the 
VP framework. 
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Background 

Working memory deficits have long been considered as a 
core cognitive impairment among the people with 
schizophrenia. Early research attributed these deficits to the 
reduced memory capacity in PSZ. Recent development of 
computational models of VWM has shown that other 
components besides the capacity, such as precision, also 
strongly mediate VWM performance (Ma, Husain, & Bays, 
2014). However, few studies attempted to model the 
memory precision and the capacity in schizophrenia (Gold 
et al., 2010). They found that memory capacity rather than 
precision was the major factor contributing to the atypical 
behavior in PSZ. 

Past years have seen the rapid progress in 
understanding the mechanistic nature of VWM. More 
elaborated computational models emerge and allow us to 
quantify the role of different memory components that alter 
behavior.  Weiji Ma and his colleagues proposed a variable 

precision (VP) framework (van den Berg, Awh, & Ma, 2014; 
van den Berg, Shin, Chou, George, & Ma, 2012). This 
framework describes the full generative process where 
several VWM components (i.e., memory resource) jointly 
produce a behavioral choice. The key feature of this 
framework is to propose that the resource varies across 
stimuli and trials as such leading to variable memory 
precision. The VP framework has been shown as the state-
of-the-art computational framework of VWM so far and the 
VP models outperformed other conventional models in a 
benchmark VWM dataset (van den Berg et al., 2014) 

In the current study, we employed the VP framework to 
contrast the VWM process in both PSZ and HCS, aiming to 
examine in which aspect of VWM did the groups of PSZ 
and HCS significantly differ. 

 
Methods 

Experiment and stimuli. Performance of 60 PSZ and 61 
demographically matched HCS was measured in a color 
delay-estimation task (Fig. 1) (Zhang & Luck, 2008). 
Subjects were asked to remember the colors of a set of 
squares, and after a short delay, to recall the color of a cued 
square by choosing its color on a color wheel. The set size 
(i.e., the number of squares in total) was either 1 or 3. Each 
set size included an experimental block of 80 trials and 
subjects completed two such blocks for two set size levels. 
The distance (in radian) in the color space between the 
reported color and the real color of the cued target was 
calculated as the response error in each trial. 
 
The VP model.  Although several variants of VP models 
exist, we used the standard VP model documented in van 
den Berg et al. (2012). We briefly summarize it as follows. 

The VP model inherits the continuous resource theory 
of VWM and assumes that the mean memory resource ( J ) 
assigned to individual items declines as the set size (N) 
increases (Bays, Catalao, & Husain, 2009):  



J = J1 *N
−a   ,                              (1) 

where J1  is the initial resource when only 1 item (N = 1) 
should be memorized and a is the decay exponent describing 
the rate of the declining trend. The key assumption here is 
that the memory resource J  varies across items and trials. 
J follows a Gamma distribution with the mean J and the 
scale parameter τ : 

J ~Gamma(J,τ )  ,                             (2) 
Intuitively, a larger τ  indicates memory resources are 
distributed across items or trials in a more heterogeneous 
manner, with some items in particular trials receiving larger 
amount of resource while others receiving very little. Here 
we denote τ  as resource allocation variability. Note that a 
larger amount of memory resource produces a higher 
precision. Thus, we do not explicitly distinguish resource 
and precision here and denote both as J. Defined as fisher 
information (Ma, Beck, Latham, & Pouget, 2006), precision 
J  can be linked to the variance of the von Mises 
distribution that generates the sensory measurement: 

J = k I1(κ )
I0 (κ )

,                                      (3) 

where I0  and I1  are modified Bessel functions of the first 
kind of order 0 and 1 respectively, with the concentration 
parameter κ . Equation (3) specifies a one-on-one mapping 
between precision J  and the variance κ of the sensory 
measurement distribution. This mapping function can be 
rewritten as: 

κ = Φ(J ) ,                                    (4) 
where Φ  is the mapping function. The probabilistic 
distribution of sensory measurement (m) given the input 
stimulus (s) can be written as: 

p(m | s) = 1
2π I0 (κ )

eκ cos(m−s ) ≡VM (m;s,κ ) ,         (5) 

We further assume that the reported color ( ŝ ) by 
participants also follows a von Mises distribution: 

p(ŝ |m) = 1
2π I0 (κ r )

eκ r cos( ŝ−m ) ≡VM (ŝ;m,κ r )  ,        (6) 

where kr  represents the variability at the choice stage and 
we denote it as choice variability.  

Taken together, this standard VP model has four free 
parameters: J1 , a, τ  and kr 	
 

Results 

We fit the VP model to estimate four components of VWM 
for all subjects. Our results suggest that the resource 
decaying function is comparable between PSZ and HCS 
(Fig. 2A, initial resource, t(119) = 0.689, p = 0.492, d = 
0.125; Fig. 2B, decay exponent, t(119) = 1.065, p = 0.289, d 
= 0.194), indicating a similar trend of set-size-dependent 
decrease in the mean VWM precision. However, PSZ 
exhibited a larger variability in the trial-by-trial resource 
allocation (Fig. 2C, t(119) = 4.03, p = 9.87 × 10-5, d = 
0.733). These findings suggest that, although the two groups 
have the same amount of VWM resources on average at a 
certain level of set size, the ability to allocate resources in 
PSZ is more heterogeneous, with some items in particular 
trials receiving larger amounts and vice versa in other cases. 
Also, no group difference was found in the choice 

 
Figure 1. The color delay-estimation task. The figure illustrates 
an example trial (set size = 3). A trial begins with a fixation, 
followed by a sample array showing three (or one) colored 
squares for 500 ms. After a 900-ms delay period, subjects 
choose the remembered color of the cued item on the color 
wheel using a computer mouse. 
	

 
Figure 2. Fitted parameters of the VP model. No significant 
group differences were found in initial resource (A), decay 
exponent (B) and choice variability (D). PSZ showed larger 
resource allocation variability compared to HCS (C). All 
errorbars are SEM across subjects. 
	



variability (Fig. 2D, t(119) = 1.7034, p = 0.091, d = 0.31), 
excluding the possibility that the VWM deficits in PSZ are 
the consequences of noise in motor or decision-making 
processes. Note that heterogeneous resource allocation is 
detrimental for this task as the cued target is randomly 
chosen. A more optimal strategy is to equally distribute 
resources to face the unpredictable target. 
 

Conclusion 
Our study proposes a new explanation that the variability to 
allocate resource accounts for the atypical VWM 
performance of people with schizophrenia. This view 
contradicts with the conventional theory assuming the 
limited capacity and provides a prime for future studies 
aiming for improving diagnosis or rehabilitation for 
schizophrenia. 
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