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A B S T R A C T

Background: Building visual encoding models to accurately predict visual responses is a central challenge for
current vision-based brain-machine interface techniques. To achieve high prediction accuracy on neural signals,
visual encoding models should include precise visual features and appropriate prediction algorithms. Most ex-
isting visual encoding models employ hand-craft visual features (e.g., Gabor wavelets or semantic labels) or data-
driven features (e.g., features extracted from deep neural networks (DNN)). They also assume a linear mapping
between feature representations to brain activity. However, it remains unknown whether such linear mapping is
sufficient for maximizing prediction accuracy.
New Method: We construct a new visual encoding framework to predict cortical responses in a benchmark
functional magnetic resonance imaging (fMRI) dataset. In this framework, we employ the transfer learning
technique to incorporate a pre-trained DNN (i.e., AlexNet) and train a nonlinear mapping from visual features to
brain activity. This nonlinear mapping replaces the conventional linear mapping and is supposed to improve
prediction accuracy on measured activity in the human visual cortex.
Results: The proposed framework can significantly predict responses of over 20% voxels in early visual areas
(i.e., V1-lateral occipital region, LO) and achieve unprecedented prediction accuracy.
Comparison with Existing Methods: Comparing to two conventional visual encoding models, we find that the
proposed encoding model shows consistent higher prediction accuracy in all early visual areas, especially in
relatively anterior visual areas (i.e., V4 and LO).
Conclusions: Our work proposes a new framework to utilize pre-trained visual features and train non-linear
mappings from visual features to brain activity.

1. Introduction

Vision is the major sensory channel to acquire external information.
Characterizing the relationship between input stimulus and endowed
human brain activity is not only an important topic in contemporary
neuroscience, but also holds the key to promote applications in neural
engineering, such as brain-machine interfaces. Visual encoding models
describe how the human brain activity in response to corresponding
external stimulus features (Naselaris et al., 2011; Chen et al., 2014; van
Gerven, 2017).

Visual processing in the brain is usually in a non-linear fashion.
Visual encoding models describe such nonlinear mapping between
input visual stimuli and brain activity. So far, visual encoding models
based on functional magnetic resonance imaging (fMRI) generally
consists of three spaces and two in-between mappings (Fig. 1A)
(Naselaris et al., 2011; Chen et al., 2014). The three spaces are the input
stimulus space, the feature space, and the brain activity space. The first
mapping between the stimulus space and the feature space is usually
nonlinear, and this mapping can be regarded as the process of feature
extraction. The second mapping between the feature space and the
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brain activity space is usually linear because this makes it easier to infer
the unit tuning along the cortical processing hierarchy in the brain.

Earlier visual encoding models are based on some existing computer
vision or neuroscience knowledge. In particular, Kay et al. (Kay et al.,
2008) used the Gabor wavelet pyramid model as the nonlinear feature
extractor from the stimulus space to the feature space (Fig. 1B). Gabor
wavelets have been shown as a good approximation of early visual
processing (Adelson and Bergen, 1985; Jones and Palmer, 1987;
Carandini et al., 2005). For high-level visual features, visual encoding
models are usually based on semantic information (Naselaris et al.,
2009; Huth et al., 2012). It depends on the category labels of objects or
natural scenes and can predict brain responses in high-level visual
areas. Importantly, these studies typically employed hand-crafted

features.
Instead of hand-crafted features, deep neural networks (DNN) have

been shown to automatically learn hierarchical visual features from a
large number of natural images (Krizhevsky et al., 2012). DNNs have
been used to explain both human fMRI data (Yamins and DiCarlo, 2016;
Baker and van Gerven, 2018; Tripp, 2018) and monkey neurophysio-
logical data (Yamins et al., 2014). With the development of DNN, some
new network architectures, such as ResNet (Wen et al., 2018), recurrent
neural network (Shi et al., 2018), variational autoencoder (Han et al.,
2017) and Capsule Network (Qiao et al., 2018), have been applied in
visual encoding models and have achieved excellent performance.

From the perspective of neural engineering, such as brain-machine
interface, accurate brain decoding requires visual encoding models that

Fig. 1. Visual encoding models. A. The general architecture of visual encoding models in neuroscience literature. It consists of three spaces (the input space, the
feature space, and the brain activity space) and two in-between mappings. The mapping from the input space to the feature space is typically nonlinear, which is
considered as a process of visual feature extraction. The mapping from the feature space to the brain activity space is typically linear, aimed at linking the brain
activity evoked by the visual features. B. The architecture of the GWP model. Gabor wavelet pyramid basis functions are used to construct the feature representation
in the feature space. The mapping from the feature space to the brain activity space is linear. C. The architecture of the DNN-linear model. This model uses the pre-
trained features in a DNN (i.e., AlexNet) to construct the feature space. The mapping from the feature space to the brain activity space is linear. D. The architecture of
the DNN-TL model. The feature space is also contrasted by the pre-trained features in a DNN, but the mapping from the feature space to the brain activity space is
nonlinear, implemented by transfer learning.
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contain appropriate visual features and prediction algorithms. The ex-
isting visual encoding models based on DNN tackling these two pro-
blems by using pre-trained layer features and linear mappings (Fig. 1C).
The ideal solution is to directly train a deep neural network that takes
image stimuli as input and predict the evoked cortical responses.
However, it is infeasible since the amount of fMRI data in an empirical
experiment is usually scares compared to the large number of para-
meters in a DNN. Here, we constructed a new visual encoding frame-
work using transfer learning, a deep learning technique aimed at sol-
ving the problem of a small amount of data in the target domain (e.g.,
visual encoding) by using the knowledge acquired in the source domain
(e.g., image classification) (Pan and Yang, 2010). In this framework, we
established transfer learning networks for visual encoding based on the
pre-trained layers from AlexNet (Krizhevsky et al., 2012). We denote
this as deep neural network transfer learning (DNN-TL) framework
(Fig. 1D).

In addition, we trained two additional layers on top of pre-trained
DNN layers to form a nonlinear mapping between the feature space to
the brain activity space. As mentioned above, one signature of existing
visual encoding models is the linear mapping between the feature space
and the brain activity space (Fig. 1B and C). From the perspective of
neuroscience, the mapping must be linear in order to reveal functional
correspondences between visual features and brain activity. The linear
mapping is optimal for theoretical interpretability but might be sub-
optimal for maximizing prediction accuracy. Here we replaced the
linear mapping with a nonlinear mapping (i.e., fully connected layers,
Fig. 2D) in order to fine-tune the network and maximize prediction
accuracy.

We also compared this DNN-TL framework to two control models
that have been frequently used in neuroscience literature. The first one
uses Gabor wavelet pyramid (GWP) as visual features (Kay et al., 2008).
The second one, denoted as the DNN-linear model here, also uses pre-

trained DNN features but assume a linear mapping from the features to
brain activity (Güçlü and van Gerven, 2015). We found that our models
performed significantly better in predictions on a benchmark fMRI
dataset. This result indicates that the transfer learning technique might
be a viable way to achieve higher precision in future research of brain-
machine interface.

2. Materials and methods

2.1. Experimental data

We validated our approach using the fMRI dataset published in Kay
et al. (2008). The dataset contains brain responses of two subjects (i.e.,
S1 and S2) acquired using a 4 T INOVA MR scanner (Varian, Inc., Palo
Alto, CA, USA). EPI (echo-planar imaging) scan was performed to ac-
quire functional images covering occipital cortex (repetition time (TR),
1000ms; echo time (TE), 28ms; flip angle, 20 deg; field of view (FOV),
128 ◊ 128 mm2; slice thickness, 2.25mm; slice gap, 0.25mm; matrix
size, 64◊ 64; spatial resolution, 2◊ 2◊ 2.5 mm3).

For functional volumes, a phase correction was applied to reduce
Nyquist ghosting and image distortion, and differences in slice acqui-
sition times were corrected by sinc interpolation. Automated motion
correction procedures were used to correct differences in head posi-
tioning within scan sessions by rigid-body transformations. Functional
images were manually co-registered to correct differences in head po-
sitioning across different sessions by affine transformations. Each
functional volume was resampled only once (by sinc interpolation); this
minimized interpolation errors that could accumulate over multiple
resamplings. No additional spatial filtering was applied to the func-
tional volumes.

Voxel-specific response time courses were estimated and decon-
volved from the time-series data. This produced, for each voxel, an

Fig. 2. Visual encoding models based on DNN and transfer learning. When a subject is seeing the stimuli (A), information flows along the visual pathway (B) and
evokes visual cortical responses (C). A transfer learning framework based on DNN (DNN-TL) is illustrated here to predict visual responses (D). Eight transfer learning
networks are established by using the first n ( =n 1, 2 8) layers of AlexNet and appending two fully connected layers. The number under each layer indicates the
operations used in this layer.
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estimate of the amplitude of the response (a single value) to each image
used in the model estimation and image identification runs. Finally,
voxels were assigned to visual areas based on retinotopic mapping data
collected in separate scan sessions. The estimated responses can be
downloaded from an online database (http://crcns.org/data-sets/vc/
vim-1). For each subject, there were 1750 stimulus responses for esti-
mation and 120 stimulus responses for validation. The stimuli were
grayscale natural images (128× 128 pixels). The evoked responses in
V1, V2, V3, V4, and lateral occipital (LO) area were selected for further
analysis. Figures in this study refer to the data from subject 1, consistent
results were obtained for subject 2, as shown in Appendix A (in
Supplementary information).

2.2. The overview of DNN-TL model

The general transfer learning process is as follows: (1) train a DNN
(denoted as base network) in a source domain; (2) copy its first n layers
to the first n layers of the target network in a target domain; (3) ran-
domly initialize the remaining layers of the target network; (4) train the
target network in the target domain driven by a target task. In step 4,
the first n layers of the target network can be frozen or fine-tuned,
depending on the size of the target dataset and the number of para-
meters in the first n layers. We chose the frozen method because of the
small amount of fMRI data.

The building process of our DNN-TL modeling in this paper is as
follows. First, we used AlexNet as our base network. This well-estab-
lished base network has been trained on the ImageNet database (Deng
et al., 2009) to classify an image into one of 1000 categories. AlexNet
consists of eight layers: five convolutional layers (with 96, 256, 384,
384, and 256 kernels, respectively) and three fully connected layers
(4096, 4096, and 1000 artificial neurons). We built eight transfer
learning networks for each of the five visual regions of interest (ROI).
The eight networks inherited the structure and model parameters from
the first one (i.e., layer 1) to the first eight layers (i.e., layer 1–8) of the
base network respectively. These inherited layers were then connected
to two additional fully connected layers. In these newly established
encoding networks, only the parameters of the last two fully connected
layers were trainable, ensuring that these networks could be trained on
a small number of fMRI data. The whole procedure of the DNN-TL
modeling is shown in Fig. 2.

2.3. Training DNN-TL models

All existing visual encoding models are voxel-wise encoding models
(Naselaris et al., 2011; Chen et al., 2014; van Gerven, 2017). Voxel-wise
encoding models can obtain the best model for each voxel based on a
training dataset. However, voxel-wise modeling can only use a linear
mapping between the feature and the brain activity spaces as it is
computationally difficult to train a complex nonlinear model separately
for each voxel. In contrast, here we employed an ROI-wise encoding
modeling approach—we trained one model to predict the responses of
all voxels in each ROI. This approach greatly reduces the computational
burden in training, and more importantly, the model parameters are
jointly constrained by the prediction accuracy on all voxels. This ap-
proach might also render the training process more vulnerable to some
noisy voxels. In order to minimize the influences of noisy voxels, we
adjusted the loss function dynamically during the training process so as
to select voxels that are truly informative. Let us write the trainable
parameters in a network concisely as = W b( , ), then the loss function
is designed as follows:= +J µ C r r W( ) ( , ( )) || ||

v
v v m p 2

2

(1)
where W and b are the weights and bias parameters in the two fully
connected layers (Fig. 2). v represents the index of one voxel in an ROI,
C r r( , ( ))v m p represents the correlation value (Pearson correlation) of

empirically measured voxel response rm and predicted voxel response
r ( )p for the v-th voxel. µv represents the weight coefficient for the v-th
voxel. is the weighted coefficient of the L2 regularization term. During
the training process, we adjusted µv dynamically in order to let the
model automatically select those informative voxels. Specifically, the
dynamical adjustment was implemented as follows: 1) The training
data were randomly divided into the training set containing 1630
images and the validation set containing 120 images. It should be noted
that the validation set was different from the test set (i.e., 1630 images
in the training set, 120 images in the validation set and 120 images in
the test set), which was used to calculate the prediction accuracy (see
section 2.5); 2) Initialization. Let µv be the constant 1, and first trained
one epoch on the training set, and got ; 3) Calculated r ( )p on the
validation set and got Cv, then µv was updated by the following func-
tion:

= <<µ
C

C C
C

0 ( 0)
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1 ( 0.27)

v

v
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4) Fixed µv and trained an epoch on the training set to get new W
and b; 5) Repeated steps 3) 4) until the loss converged.

In this way, for each ROI, we build eight encoding models from
layer 1 to layer 8. For each voxel, the model with the highest encoding
accuracy was chosen as the final model. The threshold of 0.27 in the
function (2) was obtained by randomization test at <P 0.001 (see
below). The model was built and solved using TensorFlow (Abadi et al.,
2016). We employed the Gradient Descent method to train the models.
It should be noted that was set to 0.003, the batch size was set to 32,
and the initial learning rate was set to 0.1. In our pilot experiment, we
arbitrarily tested several hyperparameters and then fixed it to 0.003
as it ensures the training could converge. We also performed a grid
search afterward and tested as 0.01, 0.005, 0.003, 0.001, 0.0005. We
found these values did not change the main conclusions in this paper.

2.4. Control models

In order to further validate the performance of our model, we
compared it with two control encoding models. The first model is the
classic GWP model (Fig. 1B) (Kay et al., 2008). The GWP model is a
voxel-wise encoding model that uses Gabor wavelet pyramid basis
functions construct the feature representations in the feature space.
Concretely, we used 48 Gabors at 6 log-spaced spatial frequencies from
1 cycle/field-of-view (FOV) to 32 cycles/FOV. For each frequency, we
sampled 8 evenly spaced orientations between 0 and 7π/8. The re-
sponses of the GWP model were defined as the square root of the
concentrated energy of the quadrature phase wavelets with the same
position, direction, and spatial frequency. The mapping from the fea-
ture space to the brain activity space was implemented using sparse
linear regression. We used regularized orthogonal matching pursuit
(ROMP) (Needell and Vershynin, 2009; 2010) as the estimation
method, which is the same as our previous research (Zhang et al.,
2018). The sparsity coefficient was set to 100 in the ROMP method.

The second encoding model is based on features in a DNN (DNN-
linear) (Fig. 1C), which is similar to the method described in Güçlü and
van Gerven (2015). This model uses the pre-trained features in AlexNet
as nonlinear feature extractors to construct the feature space. It needs to
be emphasized again that the DNN-linear model is also voxel-wise. For
each voxel in the visual cortex, a linear mapping from the feature space
to the brain activity space is trained. This linear mapping uses the same
sparse linear regression optimization approach as above. Since AlexNet
has 8 layers and in theory any layer can be used as the feature space to
predict response, we established 8 encoding models from layer 1 to
layer 8 respectively and select the model with the highest prediction
accuracy as the final DNN-TL model.
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2.5. Quantification of model performance

We define the prediction accuracy for a voxel as the Pearson cor-
relation between the observed and the predicted responses across all
120 images in the test set. For each voxel, we calculated the prediction
accuracy of each of the three models (DNN-TL, GWP, and DNN-linear).
To compare models, we first made a scatter plot in which each dot
corresponds to a single voxel (Figs. 3A and 4 A). The ordinate value of
each dot represents the prediction accuracy of one control model (GWP
or DNN-linear), while the abscissa value represents the prediction

accuracy of the DNN-TL model. Second, we plotted the distribution of
prediction accuracy difference of the voxels on whom both models
yielded significant prediction. Here, the correlation threshold for sig-
nificance prediction is 0.27 ( <p 0.001, randomization test, see below)
(Figs. 3B and 4 B). Lastly, the voxels in each ROI were sorted in the
descending order of the prediction accuracy values (Fig. 5), so as to
analyze the relationship between the prediction accuracy and the
number of effective encoding voxels in the three models.

To derive the significance threshold of the correlation value, for
each voxel, we randomly permuted the response vector (120× 1 vector

Fig. 3. Comparison of prediction accuracy between the DNN-TL (Ctl) and GWP (Cgw) models. A. Each of the five axes displays a comparison between the prediction
accuracy of the two models in one ROI. In all five scatter plots, the ordinate and abscissa represent the prediction accuracy values of the GWP model and the DNN-TL
model respectively. The green dashed lines indicate the significant prediction value of 0.27 (p < 0.001, randomization test). The black dots indicate the voxels on
whom the prediction accuracy values of both models are not significant (i.e., under 0.27). The red dots indicate the voxels whose responses can be better predicted by
the DNN-TL model than the GWP model and vice versa for the cyan dots. B. Distribution of the prediction accuracy difference between the DNN-TL and GWP models.
Prediction accuracy difference above 0 indicates higher prediction accuracy of the DNN-TL model, as marked by red color, and vice versa for the cyan color of the
GWP model. The number on each side represents the fraction of voxels whose prediction accuracy are higher under that model.
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on 120 test images) for 1000 times. We then calculated the correlation
between each permuted response vector and the model predictions
across 120 images (i.e., prediction vector). This analysis produced a
null distribution of the correlation value. It should be noted that the
null distribution does not depend on the exact values of the response
and the prediction vectors. Mathematically if you randomly shuffle
vector A and correlate it to any vector B, the distribution of the cor-
relation values keeps the same. The null distribution of the correlation
value only depends on the vector dimension (i.e., 120 in our case).
Thus, all voxels share the same null distribution even though their ac-
tivity on varied drastically on 120 test images. We derived this null
distribution and used 0.27 as significance threshold (p= 0.001).

To examine the significance of a model advantage (percent of voxels
with higher prediction accuracy), we randomly permuted (with 0.5
probability) the model prediction accuracy of each voxel whose

prediction accuracy is above 0.27 for at least one of the two models and
recalculated the advantage for each model. We repeated the calculation
for 1000 times and obtained a null distribution of model advantage. For
any two models, a model advantage deviating from 50% greater than
3% was significant ( <P 0.05) from its null hypothesis distribution.

3. Results

3.1. Comparisons between the DNN-TL model and the GWP model in
prediction accuracy

The prediction accuracy of the DNN-TL model was compared with
that of the GWP model (Fig. 3). We found that the DNN-TL model was
significantly better than the GWP model in all ROIs. From V1 to LO, the
advantages of our model became more and more obvious, from 73.2%

Fig. 4. Comparison of prediction accuracy between the DNN-TL (Ctl) and the DNN-linear (Cli) models. All symbol definitions in the subplots are the same as Fig. 3,
except that here the control model is the DNN-linear model (as marked by blue color).
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to 98.6%. Especially in LO, there were only a few voxels whose re-
sponses can be explained significantly by the GWP model and the DNN-
TL model almost performed better in all voxels.

3.2. Comparative analysis of the DNN-TL and DNN-linear models in
prediction accuracy

Fig. 4 shows the comparisons between the prediction accuracy va-
lues of the DNN-TL and the DNN-linear models. The DNN-TL model has
significant advantages over the DNN-linear model in V3, V4 and LO
(p < 0.05, permutation test), while there was no significant difference
between the two models in V1 and V2 (p > 0.05, permutation test).

3.3. Model comparison by sorting voxels in prediction accuracy

We extracted the voxels whose responses can be significantly pre-
dicted by each of the three models (C > 0.27) and sorted them in a
descending order of the prediction accuracy (Fig. 5). Overall, the DNN-
TL (red lines in Fig. 5) and the DNN-linear (blue lines in Fig. 5) models
are better than the GWP model (cyan lines in Fig. 5). Here we focus on
comparing the DNN-TL model and the DNN-linear model. The DNN-TL
model could significantly predict responses of 39.5%, 31.5%, 21.0%,
19.4% and 22.3% voxels in V1, V2, V3, V4, and LO, respectively.
However, in V1, V2, and V3, the prediction accuracy of the top voxels
calculated by DNN-linear model is higher than that of DNN-TL. We
speculate that there is a strong linear correlation between a small
number of voxel responses and DNN features in the low-level visual
area and that the use of non-linear mapping will lead to over-fitting and
reduce the prediction accuracy.

3.4. Advantages of DNN-TL models primarily stem from non-linear
mapping not dynamic loss function

In the above DNN-TL models, we employed both the non-linear

mapping and the dynamic loss function. One question might be that we
cannot disentangle which the major determinant for the superior per-
formance of DNN-TL is. We further incorporated a variant of DNN-TL
models that only non-linear mapping was used without the dynamic
loss function. For each ROI, we calculated the proportion of voxels that
can be best explained by each encoding models. We found that merely
using non-linear mapping can significantly promote the model perfor-
mance in V3, V4 and LO (Fig. 6) and the dynamic loss function only
have moderate effects.

4. Discussion

4.1. Features used for visual encoding: accuracy vs. interpretability

The interpretability and accuracy are two important indicators for
evaluating an encoding model (Kay, 2018). The accuracy indicates to
what extent a visual encoding model can predict the brain activity
evoked by novel stimuli. The interpretability indicates how well we can
capture the relationship between the components of the encoding
model (i.e., visual features) and the outcomes that the model predicts
(i.e., brain activity).

In previous voxel-wise encoding models, feature extraction is the
key to achieve high prediction accuracy (Naselaris et al., 2011; van
Gerven, 2017). Gabor wavelets are the most frequently used features for
low-level visual processing but inappropriate for higher level visual
processing. The success of deep neural networks in computer vision
inspired researchers to utilize features in DNNs since DNNs have been
shown to contain the most comprehensive and effective features ran-
ging from low-level to high-level visual processing. These features are
believed to be better descriptions of the human brain visual information
processing than other hand-craft features. In this paper, the two models
using DNN features, the DNN-TL and the DNN-linear models, have
higher prediction accuracy than the GWP model in all brain ROIs (V1-
LO). This again suggests that DNN can indeed be used as feature

Fig. 5. Comparisons of the DNN-TL, GWP, and DNN-linear models by sorting voxels in the descending order of prediction accuracy. Only the voxels on whom the
prediction accuracy value exceeds 0.27 are plotted. Red, cyan and blue curves represent the DNN-TL, the GWP, and the DNN-linear models, respectively. The DNN-
linear model exhibits significantly higher performance in higher level areas, such as V4 and LO.
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extractors in the encoding model.
To ensure high interpretability from the perspective of neu-

roscience, previous visual encoding models assumed a linear mapping
between the feature space to the brain activity space since “linearly
decodable” is the key signature that can link visual features to unit
tuning (Hong et al., 2016). We want to emphasize that our approach
here is different from the conventional approach in neuroscience as our
goal is to maximize prediction accuracy rather than to infer mechan-
isms of information processing in the brain. The linear mapping might
not achieve the best prediction accuracy for engineering purposes. Our
results demonstrate that non-linear mapping can give a more accurate
prediction.

4.2. Mapping from the feature space to the brain activity space: linear vs.
non-linear

This paper focuses on the linear and non-linear problems when
mapping the feature space to the brain activity space, which is also the
essential difference between the DNN-TL and the DNN-linear models.
The DNN-TL model can more accurately predict voxel responses than
the DNN-linear model. This advantage is more prominent in relatively
higher visual areas (i.e., LO). We speculate that the ways that DNNs and
the human visual pathway extract visual features diverged more and
more from low-level to high-level visual areas. This may be because
DNNs are always trained on a single target task (i.e., image classifica-
tion) and its high-level features are only optimized for this target task.
In contrast, visual information in the human brain is usually used to
guide multiple tasks (e.g., classification, recognition, detection, loca-
tion, etc.) at the same time. Therefore, the response in high-level visual
areas might contain more complex features than for a single task.

4.3. Training encoding model: ROI-wise vs. voxel-wise

In this paper, it is repeatedly emphasized that the DNN-TL model is
ROI-wise and the two control models are voxel-wise. The key difference
is that the parameters in the DNN-TL model are constrained by all
voxels while voxel-wise encoding models are trained separately for
each voxel. But it is possible that the model performance of the DNN-TL
modeling is drastically perturbed by a small set of noisy or non-in-
formative voxels. To circumvent this, we adaptively adjust the con-
tribution of different voxels towards loss function during the training
process. This approach ensures to select the most informative voxels.
Our pilot model training shows that the ROI-wise encoding model is less
effective if the loss function is not dynamically adjusted. The DNN-TL
model can perform much better if it can be trained on individual voxels
with sufficient computational power. Such adaptive model training
method can be used in future visual modeling practice.

4.4. Future directions for visual encoding models

In our training process, we froze the layers adopted from the pre-
trained DNN network and only optimized two fully connected layers.
This is because of the limited amount of fMRI data and is not the op-
timal method in theory. If the parameters of the new transfer learning
network are fine-tuned on sufficient training data, the performance of
the DNN-TL model might be further improved (Yosinski et al., 2014).

More and more networks with excellent performance have been
proposed in the field of deep learning. There are also many networks
that have been proved effective in visual encoding models (Han et al.,
2017; Qiao et al., 2018; Shi et al., 2018; Wen et al., 2018). In this paper,
we mainly focused on AlexNet as it already provides abundant visual
features compared to relatively limited fMRI data. A recent study em-
ployed other models (e.g., VGG16) and showed no qualitative differ-
ence from AlexNet in terms of predicting cortical activity in the human
visual cortex (Güçlü and van Gerven, 2015). One alternative direction is
to explore the potential utility of models with other structures, such as
recurrent networks, to explain brain activity (Qiao et al., 2019).

In our previous discussion on linear and non-linear mapping, we
pointed out that DNNs differ from human vision in terms of target tasks.
Nowadays, almost all encoding models based on DNNs that have been
trained on a single task (e.g. classification). Considering the features of
DNNs that are trained for other tasks, such as semantic segmentation or
target location, it is possible to improve model prediction accuracy by
aggregating the features from the models trained for different tasks,
since this is more similar to what human brain actually did (Yang et al.,
2019).

5. Conclusion

Building accurate visual encoding models is critical for successful
brain decoding. Through the technique of transfer learning, we con-
structed and trained an encoding model to predict the response in visual
cortex. By comparing the prediction accuracy of each visual ROI, we
showed that the proposed model can better predict the voxel response
in LO compared to early visual areas such as V1 and V2. Future studies
need to further explore the feasibility of using pre-trained visual fea-
tures and training non-linear prediction algorithms on these features.
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Fig. 6. Disentangling the effect of the non-linear mapping and the dynamic loss function. We trained a DNN-TL model that only includes the non-linear mapping
without the dynamic loss function. We calculated the proportion of voxels that can be best explained by each encoding model in each ROI. We found that the superior
performance of the DNN-TL models primarily stems from the non-linear mapping and the dynamic loss function only have moderate contributions.
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Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.jneumeth.2019.
108318.
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Appendices A. Results for subject 2 1 

The results of subjects 2 were consistent with those of subjects 1. Fig. A1, A2, and A3 2 

correspond to the sections 3.1, 3.1 and 3.2 in the main text. 3 
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Figure A.1. Comparison of prediction accuracy between the DNN-TL ( ) and 5 

GWP ( ) models for subject 2. Refer to Figure 3 for a detailed description of 6 

the plot elements. 7 
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Figure A.2. Comparison of prediction accuracy between the DNN-TL ( ) and 9 

the DNN-linear ( ) models for subject 2. Refer to Figure 3 for a detailed 10 
description of the plot elements. 11 
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Figure A.3. Comparisons of the DNN-TL, GWP, and DNN-linear models by 13 
sorting voxels in the descending order of prediction accuracy for subject 2. 14 
Refer to Figure 5 for a detailed description of the plot elements. 15 
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