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A B S T R A C T

Advances in hardware, pulse sequences, and reconstruction techniques have made it possible to perform func-
tional magnetic resonance imaging (fMRI) at sub-millimeter resolution while maintaining high spatial coverage
and acceptable signal-to-noise ratio. Here, we examine whether sub-millimeter fMRI can be used as a routine
method for obtaining accurate measurements of fine-scale local neural activity. We conducted fMRI in human
visual cortex during a simple event-related visual experiment (7 T, gradient-echo EPI, 0.8-mm isotropic voxels,
2.2-s sampling rate, 84 slices), and developed analysis and visualization tools to assess the quality of the data. Our
results fall along three lines of inquiry. First, we find that the acquired fMRI images, combined with appropriate
surface-based processing, provide reliable and accurate measurements of fine-scale blood oxygenation level
dependent (BOLD) activity patterns. Second, we show that the highly folded structure of cortex causes substantial
biases on spatial resolution and data visualization. Third, we examine the well-recognized issue of venous con-
tributions to fMRI signals. In a systematic assessment of large sections of cortex measured at a fine scale, we show
that time-averaged T2*-weighted EPI intensity is a simple, robust marker of venous effects. These venous effects
are unevenly distributed across cortex, are more pronounced in gyri and outer cortical depths, and are, to a certain
degree, in consistent locations across subjects relative to cortical folding. Furthermore, we show that these venous
effects are strongly correlated with BOLD responses evoked by the experiment. We conclude that sub-millimeter
fMRI can provide robust information about fine-scale BOLD activity patterns, but special care must be exercised in
visualizing and interpreting these patterns, especially with regards to the confounding influence of the brain's
vasculature. To help translate these methodological findings to neuroscience research, we provide practical
suggestions for both high-resolution and standard-resolution fMRI studies.

1. Introduction

Sub-millimeter functional magnetic resonance imaging (fMRI) is a
cutting-edge technique made possible by recent developments in MR
hardware, pulse sequences, and reconstruction techniques (Fiedler et al.,
2018; Poser and Setsompop, 2018; Stockmann and Wald, 2018; Ugurbil,
2018, 2014; Winkler et al., 2018). For example, one might acquire fMRI
data using isotropic 0.8-mm voxels, which yields a single-voxel volume
that is just a small fraction (3–6%) of that associated with more con-
ventional imaging protocols (isotropic 2-mm or 2.5-mm voxels). This vast
increase in spatial resolution is intriguing to neuroscientists, as it suggests
it may be possible to measure functional activity from small, distinct

cortical structures such as cortical columns and cortical layers, and
thereby potentially reveal new insights into brain function. Combined
with its noninvasive nature and the extensive slice coverage that can now
be achieved (Ugurbil et al., 2013; Vu et al., 2016), sub-millimeter fMRI
could substantially shift the landscape of neuroscience research.

While a number of sub-millimeter fMRI studies have been conducted
(see De Martino et al., 2018; Dumoulin et al., 2018; Lawrence et al., 2017
for reviews), sub-millimeter fMRI has not yet become a mainstream
technique in neuroscience. Part of the reason is the limited availability of
ultra-high-field MR scanners (7 T or higher), which provide increases in
signal-to-noise ratio and contrast-to-noise ratio critical for
high-resolution imaging. However, the prevalence of 7 T scanners is
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growing rapidly (Trattnig et al., 2018). We speculate that the remaining
resistancemay be due to the perception that sub-millimeter fMRImay not
possess the level of robustness and clear scientific benefit that are
necessary to motivate studies at the fine spatial scales that sub-millimeter
fMRI strives to reach. On this issue our stance is neither pessimistic nor
optimistic but driven by the evidence. As practicing neuroscientists ul-
timately interested in how the brain works, we are open to the idea that
sub-millimeter fMRI could become a routine tool that generates new
insights into neuroscientific questions.

In this paper, we perform sub-millimeter fMRI during a simple visual
experiment whose general design is representative of the kinds of ex-
periments neuroscientists might conduct. For acquisition, we use a
gradient-echo echo planar imaging pulse sequence, motivated by the fact
that gradient-echo delivers the high levels of contrast-to-noise ratio that
neuroscience experiments require, dominates in neuroscience applica-
tions, and is widely available (for a consideration of spin-echo tech-
niques, see Discussion). We use isotropic voxels (0.8-mm) to ensure
unbiased sampling of the convoluted cerebral cortex, and we use multi-
band slice acceleration (Moeller et al., 2010) to achieve large cover-
age—such coverage is important because sensory, cognitive, and motor
function often reflect coordinated activity of a large number of inter-
acting brain regions. Finally, we use a modern surface-based analysis
approach (Esteban et al., 2018; Glasser et al., 2013; Kemper et al., 2018;
Polimeni et al., 2018), necessary for handling the convoluted cortical
surface visible in large field-of-view measurements (Polimeni et al.,
2010).

The overarching goal in this study is to assess the quality and nature
of sub-millimeter fMRI measurements. In short, does sub-millimeter
gradient-echo fMRI provide accurate measurements of fine-scale neural
activity? To this end, we devote effort to evaluating surface-based pro-
cessing (Sections 3.1–3.2); developing high-quality and interpretable
data visualizations, especially with respect to cortical folding (Section
3.3); characterizing the locations of venous effects (Sections 3.4–3.5);
determining whether venous effects align across subjects (Section 3.6);
examining the relationship between veins and BOLD responses (Section
3.7); and assessing reliability and fine-scale detail in BOLD measure-
ments (Sections 3.8–3.9).

In the text below, we carefully describe the acquisition, analysis, and
visualization methods that we used in our investigation of sub-millimeter
fMRI data. The presentation may seem slow and deliberate, but we
believe that exerting tight control over analysis steps is critical for un-
derstanding the source of any surprising or peculiar effects (e.g., the
distortions in Fig. 4, the intricate patterns in Fig. 10). The work presented
here comprises both novel analysis methods as well as novel findings
regarding fMRI data and venous effects. Certainly, the general problem of
draining veins has been long recognized by the fMRI community (Haacke
et al., 1994; Kim et al., 1994; Lai et al., 1993; Menon et al., 1993; Poli-
meni et al., 2010; Turner, 2002; Ugurbil, 2016), and thus, our observa-
tion that there are systematic relationships between BOLD responses and
veins is confirmatory in nature. However, the analyses and visualizations
introduced in this paper help quantify and make more concrete these
relationships. Moreover, this paper shows how venous effects manifest in
fMRI measurements spanning large expanses of human cortex, andmakes
novel observations regarding spatial sampling and the spatial resolution
of fMRI data. Finally, we make a concerted effort to relate these meth-
odological considerations to practical concerns of neuroscientists (see
Discussion).

2. Materials and methods

2.1. Subjects

Five subjects (two males, three females; one subject, S1, was an
author (K.K.)) participated in the main experiment of this study. An
additional five subjects (two males, three females) participated in other
experiments that also contributed some data (details below). All subjects

had normal or corrected-to-normal visual acuity. Informed written con-
sent was obtained from all subjects, and the experimental protocol was
approved by the University of Minnesota Institutional Review Board.

The main subjects S1–S5 participated in a high-resolution (7 T,
0.8 mm) functional localizer (fLoc) experiment, and these datasets
comprise the majority of the results presented in this paper. The addi-
tional subjects S6–S10 participated in other high-resolution (7 T,
0.8 mm) experiments; the details of these experiments are not reported
here, as these datasets are used only to provide additional samples of T2*-
weighted EPI intensities (see Fig. 8). Subject S1 also participated in two
additional experiments: one involved repeating the high-resolution (7 T,
0.8 mm) fLoc experiment on a different day in order to assess repro-
ducibility across sessions and the other involved conducting the fLoc
experiment using a low-resolution protocol (3 T, 2.4mm).

2.2. Stimulus presentation

Stimuli were presented using a Cambridge Research Systems
BOLDscreen 32 LCD monitor positioned at the head of the 7 T scanner
bed (resolution 1920! 1080 at 120Hz; viewing distance 189.5 cm).
Subjects viewed the monitor via a mirror mounted on the RF coil. A Mac
Pro computer controlled stimulus presentation using code based on
Psychophysics Toolbox (version 3.0.14). Behavioral responses were
recorded using a button box.

2.3. Experimental design and task

The functional localizer (fLoc) experiment used in this study was
developed by the Grill-Spector lab (Stigliani et al., 2015) (stimuli and
presentation code available at http://vpnl.stanford.edu/fLoc/). The
experiment consisted of the presentation of grayscale stimuli drawn from
different stimulus categories. There were 10 categories, grouped into 5
stimulus domains: characters (word, number), body parts (body, limb),
faces (adult, child), places (corridor, house), and objects (car, instru-
ment). Each stimulus was presented on a scrambled background
(different backgrounds for different stimuli), and occupied a square re-
gion with dimensions 10" ! 10".

Stimuli were presented in 4-s trials. In a trial, 8 images from a given
category were sequentially presented (image duration 0.5 s). Each run
lasted 312.0 s and included 6 presentations of each of the 10 categories as
well as blank trials (also of 4-s duration). Throughout stimulus presen-
tation, a small red fixation dot was present at the center of the display.
Subjects were instructed to maintain fixation on the dot and to press a
button whenever they noticed an image in which only the background
was present (“oddball” task). A total of 12 runs were collected in each
scan session. We excluded one run for Subject S2 due to poor behavioral
performance (subject fell asleep). The hit rate, averaged across runs, for
subjects S1–S5 ranged between 88% and 94%.

2.4. MRI data acquisition

MRI data were collected at the Center for Magnetic Resonance
Research at the University of Minnesota. Some data were collected using
a 7 T Siemens Magnetom scanner equipped with SC72 body gradients
and a custom 4-channel-transmit, 32-channel-receive RF head coil. This
RF coil consists of loops localized at the posterior of the brain. As such,
the coil has best sensitivity for occipital cortex but detects signals from
the whole brain. For RF transmission, we used fixed phase offsets for
individual coil elements calibrated in a separate session (parallel transmit
was not used). Other data were collected using a 3 T Siemens Prisma
scanner and a standard Siemens 32-channel RF head coil. Head motion
was mitigated using standard foam padding.

Anatomical data were collected at 3 T at 0.8-mm isotropic resolution.
Our motivation for collecting anatomical data at 3 T was to ensure
acquisition of T1 volumes with good contrast and homogeneity, which is
difficult to achieve at ultra-high field (Polimeni et al., 2018). We
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recognize that limitations on time, resources, and availability may pre-
clude separate anatomical acquisition at 3 T; it may be possible to achieve
accurate cortical surface reconstruction using 7 T acquisition, such as the
MP2RAGE sequence (Marques et al., 2010). To ensure high
contrast-to-noise ratio, we acquired several repetitions of each type of
anatomical volume. For each subject, we typically collected 8 scans of a
whole-brain T1-weightedMPRAGE sequence (TR 2400ms, TE 2.22ms, TI
1000ms, flip angle 8", bandwidth 220 Hz/pixel, no partial Fourier,
in-plane acceleration factor (iPAT) 2, TA 6.6min/scan) and 2 scans of a
whole-brain T2-weighted SPACE sequence (TR 3200ms, TE 563ms,
bandwidth 744Hz/pixel, no partial Fourier, in-plane acceleration factor
(iPAT) 2, TA 6.0min/scan). The T1 and T2 acquisitions included brief
periods at the beginning of each scan to estimate coil-related intensity
bias (vendor-specific “pre-scan”); we used the “pre-scan-normalized”
versions of the T1 and T2 volumes.

Functional data were collected at 7 T using gradient-echo EPI at 0.8-
mm isotropic resolution with partial-brain coverage (84 oblique slices
covering occipitotemporal cortex, slice thickness 0.8 mm, slice gap 0mm,
field-of-view 160mm (FE)! 129.6mm (PE), phase-encode direction
inferior-superior (F »H in Siemens’ notation), matrix size 200! 162, TR
2.2 s, TE 22.4ms, flip angle 80", echo spacing 1.00ms, bandwidth
1136 Hz/pixel, partial Fourier 6/8, in-plane acceleration factor (iPAT) 3,
multiband slice acceleration factor 2). We chose the phase-encode di-
rection to be inferior-superior to maximize coverage and sampling effi-
ciency and to avoid misassignment of signals across hemispheres (as may
occur with left-right phase-encode direction); although there is potential
for peripheral nerve stimulation with inferior-superior, none of the
subjects reported any discomfort. EPI images were reconstructed using
zero-filling. Gradient-echo fieldmaps were also acquired for post-hoc
correction of EPI spatial distortion (same slice slab as the EPI data, res-
olution 2mm! 2mm! 2.4mm, TR 391ms, TE1 4.59ms, TE2 5.61ms,
flip angle 40", bandwidth 260Hz/pixel, no partial Fourier, TA 1.3min).
Fieldmaps were periodically acquired over the course of each scan ses-
sion to track changes in the magnetic field (before and after the func-
tional runs as well as approximately every 20min interspersed between
the runs). The purpose of acquiring multiple fieldmaps is to more accu-
rately undistort EPI volumes (see Section 2.7).

Additional data were acquired for one subject (S1). For high-quality
images of venous structure, we collected a susceptibility-weighted im-
aging (SWI) scan at 7 T at a resolution of 0.52mm! 0.52mm! 0.4mm
(3D sequence, TR 28ms, TE 21ms, flip angle 17", bandwidth 120Hz/
pixel, phase partial Fourier 6/8, slice partial Fourier 6/8, in-plane ac-
celeration factor (iPAT) 3, TA 5.3min). For comparison of high-
resolution results to that obtained using more standard protocols, we
conducted the fLoc experiment at 3 T using a low-resolution fMRI pro-
tocol. This involved gradient-echo EPI at 2.4-mm isotropic resolution
with partial brain coverage (30 slices, slice thickness 2.4mm, slice gap
0mm, field-of-view 192mm (FE)! 192mm (PE), phase-encode direc-
tion anterior-posterior (A » P in Siemens’ notation), matrix size 80! 80,
TR 1.1 s, TE 30ms, flip angle 62", echo spacing 0.55ms, bandwidth
2232 Hz/pixel, no partial Fourier, no in-plane acceleration, multiband
slice acceleration factor 2), along with gradient-echo fieldmaps.

2.5. Data analysis

Data analysis was performed using a combination of custom code
written in MATLAB (version 8.3) and certain tools from FreeSurfer, SPM,
and FSL (specific usages of these tools are documented below). Routines
that we have developed for pre-processing and visualization are available
online (http://github.com/kendrickkay/). General principles underlying
fMRI pre-processing procedures (including many of the procedures used
in this study) are discussed in an excellent comprehensive review by
Polimeni and colleagues (Polimeni et al., 2018). Our approach to
pre-processing prioritizes simplicity (i.e. do as little to the raw data as
possible) in order to maximize understanding and interpretability; such a

stance may be important in light of increasingly complex analysis streams
(Polimeni et al., 2018).

2.6. Anatomical pre-processing

2.6.1. Preparation of anatomical volumes
T1-and T2-weighted anatomical volumes were corrected for gradient

nonlinearities using a custom Python script (https://github.com/
Washington-University/gradunwarp) and the proprietary Siemens
gradient coefficient file retrieved from the scanner. T1 volumes were co-
registered (rigid-body transformation with 6 degrees of freedom; corre-
lation metric; cubic interpolation) and averaged to improve contrast-to-
noise ratio, and the same was done to the T2 volumes (cvnalignmulti-
ple.m). In estimation of the co-registration alignment, we used a manually
defined 3D ellipse to focus the cost metric on brain tissue, thereby
avoiding the influence of motion in face and neck regions. Each volume
was inspected for image artifacts (e.g. ripples due to head motion during
the scan) and rejected from the averaging procedure if deemed to be of
poor quality. The FSL tool FLIRT (version 6.0) was then used to co-
register the averaged T2 volume to the averaged T1 volume (rigid-body
transformation; correlation metric; sinc interpolation). We henceforth
refer to the averaged and co-registered T1 and T2 volumes as simply the
T1 and T2 volumes.

2.6.2. Generation of cortical surface representations
The T1 volume (0.8-mm resolution) was processed using FreeSurfer

(Fischl, 2012) version 6 beta (build-stamp 20161007) with the -hires
option (cvnrunfreesurfer.m). Manual edits of tissue segmentation
(marking voxels as gray matter, white matter, or CSF) were performed to
improve the accuracy of the cortical surface representations generated by
FreeSurfer. The T2 volume was used to aid manual segmentation de-
cisions, but was not explicitly used in the FreeSurfer processing. We
found that edits were generally needed in a limited number of locations
in each subject and had relatively minor impact on overall results (Sup-
plementary Fig. 1).

Several additional processing steps were performed (cvnrun-
freesurfer2.m, cvnmakelayers.m). Usingmris_expand, we generated cortical
surfaces positioned at different depths of the gray matter. Specifically, we
constructed 6 surfaces spaced equally between 10% and 90% of the
distance between the pial surface and the boundary between gray and
white matter (see Fig. 2). Note that these 6 cortical depths do not
necessarily correspond to cytoarchitectural layers of the cortex; the main
concern is to ensure that surfaces are positioned sufficiently close
together to support the high-resolution fMRI measurements (see Fig. 3B).
We also increased the density of surface vertices using mris_mesh_subdi-
vide. This bisected each edge and resulted in a doubling of the number of
vertices. Finally, to reduce computational burden, we truncated the
surfaces to include only posterior portions of cortex (since this is where
functional measurements are made).

Flattened versions of cortical surfaces were also generated. We cut a
cortical patch covering ventral temporal cortex (VTC) and a cortical
patch covering early visual cortex (EVC), and flattened these patches
using mris_flatten. The patches were then scaled in size such that the edge
lengths in the flattened surfaces match, on average, the edge lengths in
the corresponding white-matter surfaces (an exact match is impossible
given the distortions inherent in flattening). This makes it possible to
interpret the flattened surfaces with respect to quantitative units (e.g.,
see Fig. 10).

Overall, the generated cortical surface representations include
metrically accurate surfaces, such as white, pial, and the six depth-
dependent surfaces described above, as well as distorted surfaces, such
as inflated, sphere, sphere.reg (a surface that is registered to fsaverage), and
the flattened surfaces for EVC and VTC. All surfaces are triangulated
meshes composed of vertices and edges, and there is a one-to-one cor-
respondence of vertices across surfaces.
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2.6.3. Additional surface-related methods
Curvature estimates provided by FreeSurfer were used to identify

sulci and gyri; as is typical convention, we use dark gray to indicate sulci
(curvature> 0) and light gray to indicate gyri (curvature< 0). Abbrevi-
ations for specific sulci and gyri are as follows: IPS¼ intraparietal sulcus,
LOS¼ lateral occipital sulcus, TOS¼ transverse occipital sulcus,
POS¼ parieto-occipital sulcus, Calc¼ calcarine sulcus, pSTS¼ posterior
superior temporal sulcus, IOG¼ inferior occipital gyrus, PLS¼ posterior

lingual sulcus, ALS¼ anterior lingual sulcus, OTS¼ occipitotemporal
sulcus, CoS¼ collateral sulcus, FG¼ fusiform gyrus, mFus¼mid-fusi-
form sulcus, and ptCoS¼ posterior transverse collateral sulcus.

The fsaverage surface is an anatomical surface template, and Free-
Surfer provides curvature-based alignment of individual subjects to this
template. We increased the density of the fsaverage surface (same method
as above) and mapped individual subjects to and from fsaverage using
nearest-neighbor interpolation in the spherical space defined by

Fig. 1. Schematic of fMRI analysis methods. A, Example slice prescription used for sub-millimeter fMRI. B, Pre-processing of functional data. Two operations are
performed. EPI volumes are temporally resampled (cubic interpolation of each voxel's time-series data) to correct for differences in slice acquisition times and to
achieve a desired sampling rate. The EPI volumes are then spatially resampled (cubic interpolation of each volume) onto cortical surface vertices (see Fig. 2). The
spatial operation compensates for head motion, EPI distortion, and registration between functional and anatomical data. The depicted schematic shows how different
acquired EPI volumes are mapped onto a single surface vertex. C, Visualization of surface-based data. Surface vertices are orthographically projected to the image
plane, and each image pixel is assigned the value associated with the nearest vertex. This nearest-neighbor approach avoids blurring and is computationally efficient.
D, Region-of-interest (ROI). For summarizing results in this paper, we define and use a fsaverage ROI (red outline) that captures visually responsive cortex (see Methods
for details).

Fig. 2. Cortical surface representations.
Cortical surface representations were gener-
ated using FreeSurfer applied to a 0.8-mm T1
volume. Six surfaces were created equally
spaced between 10% (Depth 1) and 90%
(Depth 6) of the distance between the pial
and white-matter surfaces, and edges were
bisected to increase vertex density. A,
Detailed view of surface results (Subject S1).
On the left is the T1 volume; on the right is a
smoothed version of the T1 volume with
surfaces overlaid. B, Ventral view of inflated
right hemisphere. The red dotted line in
panel B corresponds to the cortical cross-
section marked by red dotted lines in the
right side of panel A. C, Visualization of
surface vertices. Each colored line corre-
sponds to the vertices marked by the red
dotted line in panel B. Thin gray lines join
corresponding vertices across surfaces. For
surfaces positioned at inner cortical depths
(e.g. White, Depth 6), vertex density is rela-
tively homogeneous, but for surfaces posi-
tioned at outer cortical depths (e.g. Pial,
Depth 1), vertex density varies depending on
local cortical curvature.
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FreeSurfer (sphere.reg). Finally, we used a publicly available atlas of vi-
sual topography (Wang et al., 2014), prepared in fsaverage space, to
determine approximate locations of retinotopic visual areas (e.g., see
Fig. 5).

2.6.4. Analysis of SWI data
The SWI volume provides a detailed, high-quality assessment of

venous structure (Haacke et al., 2009; Moerel et al., 2018; Ward et al.,
2018). For simplicity, we used only the magnitude component of the
data, as the phase component is complicated by the existence of phase
wrap (incorporating phase information produces very similar results;
data not shown). We co-registered the SWI volume to the T2 volume
(affine transformation with 12 degrees of freedom; correlation metric)
and then resampled the SWI volume onto an isotropic 0.4-mm voxel grid
(cubic interpolation). This procedure preserves the high acquisition
resolution of the SWI volume (0.52mm! 0.52mm! 0.4mm) and gen-
erates a volume that is spatially aligned with the 0.8-mm voxel grid of the
T2 volume, thereby enabling direct comparison (see Fig. 7).

2.7. Functional pre-processing

2.7.1. Preparation of fieldmaps
Fieldmaps acquired in each session were phase-unwrapped using the

FSL utility prelude (version 2.0) with flags -s -t 0. We then regularized the
fieldmaps by performing 3D local linear regression using an Epanechni-
kov kernel with radius 5mm; we used values in the magnitude compo-
nent of the fieldmap as weights in the regression in order to improve
robustness of the field estimates (see localregression3d.m, pre-
processfmri.m). This regularization procedure removes noise from the
fieldmaps and imposes some degree of spatial smoothness. In theory, the
procedure provides better field estimates than simple Gaussian smooth-
ing, since the latter treats voxels with no MR signal the same as voxels
with strong MR signal. Finally, we linearly interpolated the fieldmaps
over time, producing an estimate of the field strength for each functional
volume acquired. This approach compensates for changes in the static
magnetic field caused by gradual head displacement over the course of a
scan session, and is similar in spirit to a recently proposed method that
exploits the phase component of EPI volumes to estimate time-varying
field changes (Dymerska et al., 2018).

The use of time-varying field estimates is a bit non-standard in the
field of fMRI. We perform this additional methodology in an attempt to
achieve accurate undistortion of EPI volumes and stable EPI imaging over
the course of a scan session. We invite the reader to visually inspect (1)
pre-processing results from our time-varying approach, (2) pre-
processing results using no fieldmaps, and (3) pre-processing results
using only a single fieldmap (Supplementary Movies 2–4).

We recognize that there are alternative approaches for dealing with
EPI distortion. In particular, one approach is to not correct the distortion
and instead construct cortical surface representations in the distorted EPI
space (Huber et al., 2017; Kashyap et al., 2018; Renvall et al., 2016). This
is a very different approach that has the potential to produce satisfactory
results for a given study. Although comparison against alternative ap-
proaches is outside the scope of the present paper, we do highlight the
appeal of anatomically accurate surfaces, as they facilitate quantification
of real physical units (e.g. mm, mm2) and comparison to other MRI
datasets (e.g. other subjects, atlases).

2.7.2. Volume-based pre-processing
The functional data were initially pre-processed as volumes. First,

cubic interpolation was performed on each voxel's time-series data in
order to correct for differences in slice acquisition times and to obtain a
more convenient sampling rate (2.0 s for the 7 T datasets; 1.0 s for the 3 T
dataset). This can be viewed as a temporal correction step. Note that the
change of sampling rate occurs in the same operation as the correction for
slice acquisition times, and thus does not induce any additional temporal
smoothing. Next, the regularized time-interpolated fieldmap estimates
were used to correct EPI spatial distortion using the unwarpingmethod of
Jezzard and Balaban (1995) (cubic interpolation of each volume).
Rigid-body motion parameters were then estimated from the undistorted
EPI volumes with the SPM5 utility spm_realign (using the first EPI volume
as the reference). Finally, cubic interpolation was performed on each
slice-time-corrected volume to compensate for the combined effects of
EPI spatial distortion and motion (the transformation for correcting
distortion and the transformation for correcting motion are concatenated
such that a single interpolation is performed). This can be viewed as a
spatial correction step. Note that performing undistortion before motion
correction is appropriate given the use of time-varying field estimates. To
the extent that time-varying field estimates yield brain volumes that are
more accurately undistorted, this theoretically increases the accuracy of
motion parameter estimates.

A few alternative pre-processing schemes were used for some results
in this paper. To facilitate direct comparison of the functional data and
anatomical data (see Fig. 7), a version of the functional data was
generated in which the final spatial interpolation is performed at the
positions of the 0.8-mm voxels associated with the T1 and T2 volumes

Fig. 3. Resolution of cortical surface representations. A, Histogram of edge
lengths. For each vertex, we computed the average length of the edges involving
that vertex. Different shades of red and blue indicate different subjects, and
vertical lines indicate medians after aggregating across subjects. At outer depths,
sulci exhibit decrease in edge length while gyri exhibit increase in edge length.
B, Histogram of depth separations. For each vertex, we computed the distance
between the locations of that vertex in adjacent surfaces (Depth 1 to 2, Depth 2
to 3, etc.) and averaged the five resulting values. Results are shown in the same
format as panel A. Due to increased cortical thickness, gyri exhibit somewhat
greater depth separation than sulci. All of the depicted distributions (edge
lengths, depth separations) lie well below 0.8mm, indicating that the resolution
of the cortical surfaces used in this study are sufficient to support 0.8-mm fMRI
measurements.
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(based on the co-registration determined in the next section). To simulate
low-resolution fMRI data (see Fig. 7B, third column and Fig. 9A, sixth
column), after pre-processing the 0.8-mm functional volumes, we
spatially smoothed the volumes using an ideal Fourier filter (10th-order
low-pass Butterworth filter) before subsequent analysis.

2.7.3. Co-registration to anatomy
We co-registered the average of the pre-processed functional volumes

obtained in a scan session to the T2 volume (affine transformation with
12 degrees of freedom; correlation metric; cvnalignEPItoT2.m). In esti-
mation of the co-registration alignment, we used a manually defined 3D
ellipse to focus the cost metric on brain regions that are unaffected by
gross susceptibility effects (e.g. near the ear canals). Since the EPI data
and the T2 volume share similar tissue contrast, we found co-registration
to yield consistently robust and accurate results. The use of an affine
transformation is necessary to account for small discrepancies in spatial
scaling (typically 0–3%) across scanners (the EPI data are from 7 T while
the T1 and T2 data are from 3 T). Although the extra scaling and shearing
parameters present in the affine transformation would be rendered un-
necessary if the functional and anatomical data had been acquired on the
same scanner, we believe that the parameters constitute only a small
amount of additional flexibility and are likely accurately estimated. The
final result of the co-registration is a transformation that indicates how to
map the EPI data to the subject-native anatomy (and therefore the
cortical surface representations).

2.7.4. Surface-based pre-processing
With the anatomical co-registration complete, the functional data

were re-analyzed using surface-based pre-processing. The reason for this
two-stage approach is that the volume-based pre-processing is necessary
to generate the high-quality undistorted functional volume that is used to
determine the registration of the functional data to the anatomical data.
It is only after this registration is obtained that the surface-based pre-
processing can proceed.

In surface-based pre-processing, the exact same procedures associated
with volume-based pre-processing are performed, except that the final

spatial interpolation is performed at the locations of the vertices of the 6
depth-dependent surfaces. Thus, the only difference between volume-
and surface-based pre-processing is that the data are prepared either on a
regular 3D grid (volume) or an irregular manifold of densely spaced
vertices (surface). The use of interpolation to map volumetric data onto
surface representations (as opposed to incorporating spatial kernels
tailored to the cortical surface (Grova et al., 2006)) helps maximize
spatial resolution and avoids making strong assumptions about cortical
topology. A brief note on data size: the volume-based pre-processing
generates time-series data for 162 phase-encode! 200 fre-
quency-encode! 84 slices¼~2.7 million voxels, whereas the
surface-based pre-processing generates time-series data for ~800,000
vertices in the bisected and truncated left and right hemisphere cortical
surfaces! 6 depths¼~5 million vertices.

The entire surface-based pre-processing ultimately reduces to a single
temporal resampling (to deal with slice acquisition times and change of
sampling rate) and a single spatial resampling (to deal with EPI distor-
tion, head motion, and registration to anatomy) (Fig. 1A). Minimizing
unnecessary interpolations preserves resolution in the functional data
and is similar to the approach taken in the Human Connectome Project
(Glasser et al., 2013). Moreover, resampling the functional data onto
densely sampled surfaces mitigates spatial resolution losses caused by
interpolation (Kang et al., 2007). For example, due to displacements in
head position, the local signal associated with a given brain location is
sometimes sampled well (e.g. the brain location lies in the middle of a
slice) but sometimes sampled poorly (e.g. the brain location lies
in-between two adjacent slices); preparing the data on densely sampled
surfaces ensures that this brain location experiences minimal
interpolation-induced blurring for the acquired functional volumes that
happen to fall under the former case. Finally, it is important to keep in
mind that since the functional data are oversampled when projected onto
the cortical surface, the data associated with nearby vertices are partic-
ularly statistically dependent, and so care must be exercised when
designing statistical inference procedures.

Interpolation induces spatial smoothness and a loss of spatial reso-
lution (Polimeni et al., 2018). We stress that in our processing approach,

Fig. 4. Curvature causes depth-dependent
distortion. A, ‘Surface voxels’ technique. We
use nearest-neighbor interpolation to sample
isotropic 2.0-mm voxels onto the cortical
surfaces for an example subject (S2), and use
distinct colors to indicate distinct voxels (see
Methods). The top row shows results on the
inflated right hemisphere; the bottom row
shows results on a flattened section of
ventral temporal cortex (indicated by the
black outline in the top row). Color patches
are relatively isotropic when sampling onto
the white-matter surface but are substan-
tially distorted when sampling onto the pial
surface. B, Detailed view of rectangular re-
gion outlined in panel A. Progressing from
inner to outer depths, gyri undergo
compression (voxels appear to shrink), while
sulci undergo expansion (voxels appear to
enlarge).
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there is no additional loss of resolution when preparing data in surface
format. Assuming that one is willing to perform spatial interpolation to
correct displacements in head position, there is fundamentally no dif-
ference between performing a cubic interpolation at a location in space
deemed to be the center of a voxel (volume format) or a location of space
deemed to be the location of a vertex (surface format). However, it is
important to keep in mind that vertices in cortical surfaces are often
irregularly spaced and that results from some interpolation methods may
be influenced by regional differences in vertex topology (e.g. vertex
spacing, vertex degree), whereas such complications are not encountered
with the use of a spatially regular voxel grid.

2.7.5. Bias correction of EPI intensities
EPI intensities can be used as an anatomical marker of the location of

venous effects. However, MRI image intensities, including those from
EPI, are influenced by inhomogeneities in the transmit and receive

profiles of the RF coil. To reduce these biases, we first computed the
mean of the surface-based pre-processed functional data over time,
producing EPI intensities with dimensionsN vertices! 6 depths. We then
fit a 3D polynomial to these values (taking into account their locations in
subject-native space) using polynomials with degree up to 4 (cvnremo-
vecoilbias.m). Finally, we divided the time-averaged EPI intensities by the
fitted polynomial, generating values that can be interpreted as percent-
ages (e.g., 0.8 means 80% of the brightness of typical EPI intensities).
Note that transmit inhomogeneities can lead to variations in local tissue
contrast; the procedure here largely avoids this additional complication
since it is restricted to EPI intensities at gray-matter locations.

To generate the volumetric version of bias-corrected EPI intensities
shown in Fig. 7A, we allowed each vertex to contribute a triangular
(linear) kernel of size þ /% 0.8 mm and calculated a weighted average of
bias-corrected EPI intensities at each voxel of the volume (cvnmapsurfa-
cetovolume.m). Note that bias correction of EPI intensities is used only to

Fig. 5. Comprehensive view of static susceptibility effects. A, Bias-corrected EPI intensities (posterior view, spherical surface, right hemisphere). The colormap for
each image ranges from 0 to 2, as in Fig. 9B. In the last column, black indicates intensities less than 0.75 in at least one of the depths (for details on the threshold, see
Fig. 6). All subjects exhibit a complex, fine-scale pattern of susceptibility. For an intuitive movie that conveys the depth-dependence of the susceptibility effects, see
Supplementary Movie 5. B, Results shown on the inflated right hemisphere (Subject S5, Depth 1). C, Photograph of postmortem adult male cortex (courtesy of K. Grill-
Spector). The spatial structure of the vasculature visible here resembles the susceptibility observed in our sub-millimeter fMRI measurements.
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help identify venous effects; the analyses described below are performed
on the pre-processed functional data without bias correction.

2.7.6. Quantification of impact of EPI distortion on spatial resolution
Inhomogeneity in the static magnetic field leads to compression and

expansion along the phase-encode direction in EPI. Our use of fieldmaps
to correct EPI spatial distortion (see Section 2.7) corrects the positioning
of EPI signals but does not compensate for resolution loss or gain. Since
one of the goals of this paper is to assess spatial resolution in sub-
millimeter fMRI, we performed an analysis to assess the magnitude of
the compression and expansion effects. First, we took the regularized
fieldmap estimate associated with the first fieldmap acquired in a given
scan session (the first fieldmap is used because it is acquired immediately
before the first EPI volume, which is used as the reference in volume-
based pre-processing). We then converted the fieldmap estimate to
units of voxel shifts (using the method of Jezzard and Balaban (1995)),
producing a matrix with the same dimensions as the EPI data (isotropic
0.8-mm voxels). For example, if the magnetic field were perfectly ho-
mogeneous and on-resonance, this matrix would be filled with zeros.
Next, we calculated the 1st-order difference of the voxel shifts along the
phase-encode dimension, using boxcar averaging to compensate for the
offset induced (e.g., the difference of the 2nd and 1st voxel shift is

averaged with the difference of the 3rd and 2nd voxel shift in order to
produce a single number associated with the 2nd voxel). Note that care
must be used in this calculation to ensure that the direction and sign of
the 1st-order difference is consistent with the phase-encode direction of
the EPI acquisition. We converted the 1st-order differences to estimates
of effective voxel size using the following equation:

EVS ¼ VS! A ¼ VS! 1
1 % minðD ; 1Þ

where EVS is the effective voxel size in millimeters, VS is the original
voxel size in millimeters (0.8mm),A is the adjustment factor, andD is the
1st-order difference observed at a given voxel. The intuition is that a
voxel that encroaches upon an adjacent voxel by half of a voxel shift
(D¼ 0.5) can be interpreted as a doubling of the amount of signal being
squeezed into a fixed spatial extent (compression), thereby incurring a
loss of resolution by a factor of 2 and an increase of effective voxel size by
a factor of 2. Conversely, a voxel that is pushed away from an adjacent
voxel by one voxel shift (D¼ % 1) can be interpreted as spreading signals
across twice the amount of space (expansion), thereby incurring a gain in
resolution by a factor of 2 and a decrease of effective voxel size by a factor
of 2. (Note that this method for quantifying effective voxel size is
equivalent to calculating the determinant of the Jacobian that charac-
terizes the mapping from the original voxel space to the distorted space;
that determinant is equal to adjustment factor A.) Finally, to restrict our
assessment to relevant regions of space, we sampled the matrix of
effective voxel sizes onto cortical surface representations using nearest-
neighbor interpolation. Results are shown in Supplementary Fig. 2.
Most cortical locations are minimally affected (less than 10% resolution
loss or gain), but some regions exhibit substantial effects.

2.8. GLM analysis

Pre-processed functional data were analyzed using GLMdenoise (Kay
et al., 2013a), a data-driven denoising method that derives estimates of
correlated noise from the data and incorporates these estimates as
nuisance regressors in a general linear model (GLM) analysis of the data.
The design matrix used in the GLM was constructed using a “con-
dition-split” strategy in which different trials of the same experimental
condition within a run are split into separate conditions but allowed to
repeat across runs (in randomly assigned order). For example, in the fLoc
experiment, we split the 10 stimulus categories into 10 stimulus cate-
gories! 6 splits¼ 60 conditions, and the design matrix was designed
such that the 60 conditions are presented 12 times over the course of the
experiment (once in each run). Hence, in this example, a single beta
weight is estimated for each of the 60 conditions across all runs. The
advantage of this condition-split strategy is that the beta weight esti-
mated for each condition-split provides an independent estimate of the
BOLD response, and so error quantification can be done by simply
examining variability of beta weights across condition-splits. Overall, the
GLM consisted of experimental regressors constructed by convolving the
design matrix with a canonical hemodynamic response function, poly-
nomial regressors that characterize the baseline signal level in each run,
and data-derived nuisance regressors. We recognize that the use of a
canonical hemodynamic response function is only a first-order approxi-
mation; understanding differences in temporal dynamics across cortical
depth (e.g. Siero et al., 2011) is an important topic for further research.

The GLM was fit to the time-series data observed for vertices at each
surface depth as well as the time-series data averaged across depths.
Variance explained (R2) was calculated as the percentage of variance in
the time-series data explained by the experimental regressors after pro-
jecting out the polynomial regressors from both the model fit and the
data. Beta weights from the GLM (reflecting BOLD response amplitudes to
the experimental conditions) were converted from raw image units to
units of percent BOLD signal change by dividing by the mean signal in-
tensity observed at each vertex and multiplying by 100. For the purposes

Fig. 6. Static susceptibility effects correlate with cortical depth and cur-
vature. A, Relationship to cortical depth. Depicted are histograms of bias-
corrected EPI intensities (aggregated across subjects). The inset shows results
of a Gaussian Mixture Model that has been fit to intensities aggregated across
subjects and depths (red, blue, and purple indicate the two fitted Gaussian
distributions and their sum, respectively). The value at which the posterior
probability switches between the two distributions is 0.75, and we use this
threshold to determine ‘dark’ vertices. B, Relationship to cortical curvature. The
percentage of vertices classified as dark is plotted separately for sulci and gyri.
Dark vertices tend to be located at outer depths and in gyri.
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of this paper, we collapse beta weights across the two categories asso-
ciated with each stimulus domain (for example, we average the response
to adult and child faces to obtain a single beta weight for ‘faces’). To
summarize the strength of evoked responses for a given vertex, we
computed the mean absolute beta, that is, the mean of the absolute values
of the observed beta weights. By taking the absolute value of beta
weights, we allow for both positive and negative BOLD responses. Mea-
surement errors on beta weights, termed beta errors, were computed as
the standard error of beta weights across condition-splits (i.e., standard
error across the 6 beta weights obtained from the 6 different splits). To
summarize the size of beta errors for a given vertex, we computed the
mean beta error across different conditions. Finally, to summarize the
overall reliability of evoked responses for a given vertex, we divided the
mean absolute beta by the mean beta error, producing the normalized
beta.

2.9. Region-of-interest (ROI) definition

We defined a general region-of-interest (ROI) that reflects visually
responsive cortex and used this ROI to summarize results (dra-
wroipoly.m). Unless otherwise indicated, all results in this paper reflect
data from vertices in this ROI. To define the ROI, we first calculated GLM
variance explained (R2) for the depth-averaged data preparation and
transferred these values onto fsaverage. Then, we averaged the R2 values
across subjects. Finally, we manually defined an ROI on fsaverage that
encompasses a contiguous region containing high R2 values. This ROI,
covering parts of occipital, parietal, and temporal cortex, is shown in
Fig. 1C. The ROI was backprojected to individual subjects for selection of
vertices.

2.10. Visualization methods

2.10.1. Surface visualization
To visualize surface-based data, we developed a tool called cvnloo-

kupimages.m. This tool orthographically projects the vertices of a surface
onto the image plane and then uses nearest-neighbor interpolation to
assign values from vertices to pixels (see Fig. 1C). The key feature of the
tool is the use of nearest-neighbor interpolation. Nearest-neighbor
interpolation provides transparency: the values you see directly reflect
values in the underlying data and are not unnecessarily blurred or
influenced by some rendering mechanism (although for curved surfaces,
shading is added to help convey 3D structure). Furthermore, nearest-
neighbor interpolation is fast, as the mapping between vertices and
pixels can be implemented as a simple indexing operation. This, com-
bined with the fact that cvnlookupimages.m requires no manual inter-
vention, makes it possible to quickly generate hundreds of surface
visualizations.

We note some similarity between the visualization approach pre-
sented here and the pixel-based mapping approach described by Gao
et al. (2015). In that approach, nearest-neighbor interpolation is used to
relate image pixels to functional data prepared in voxel format (thereby
circumventing intermediary interpolation steps that occur in conven-
tional processing pipelines). Our approach shares the philosophy of
nearest neighbor, but differs in that we use a surface-based pre--
processing approach in which functional volumes are sampled onto
densely spaced cortical surface vertices in the same step that corrects
head motion and spatial distortion. Upsampling the data (compared to
the original voxel grid) serves to maximize the spatial information that
may be present in our data (see Section 2.7).

To summarize the various transformations involved in taking raw

Fig. 7. Volume-based visualization of susceptibility effects. A, Visualization of a coronal slice (Subject S5). In addition to T1, T2, and EPI intensities, we show bias-
corrected EPI intensities (transformed from surface to volume) and a thresholded version of these intensities (<0.75). Thresholded voxels are shown as a red overlay in
the second row of images. B, Visualization using intensity projection (Subject S1). We compute the minimum or maximum intensity observed along the superior-
inferior dimension for a 1.04-cm slab in occipital cortex (red rectangle). The first row shows minimum intensity projections for an SWI volume acquired at very
high resolution, the high-resolution EPI volume from the main experiment, a simulated low-resolution EPI volume obtained by spatially smoothing the high-resolution
EPI volume, and an actual low-resolution EPI volume. The second row shows maximum intensity projections for BOLD responses evoked by the experiment. The third
row thresholds the images from the second row at 1/3 of the maximum colormap value and superimposes the results on the images from the first row.

K. Kay et al. NeuroImage 189 (2019) 847–869

855



fMRI data and generating surface visualizations: (1) The raw functional
volumes consist of voxels spaced on a 0.8-mm grid, (2) these voxels are
sampled via cubic interpolation onto densely packed surface vertices
with approximately 0.4-mm spacing (see Fig. 3), and (3) these surface
vertices are visualized using nearest-neighbor mapping to image pixels.

2.11. Line profiles

To generate the ‘line profiles’ visualization shown in Fig. 11 (see also
Havlicek et al., OHBM abstract, 2016), we manually defined a line on
cortex and determined the sequence of vertices that most closely
approximate the line. Specifically, a manually defined line was rasterized
into a sequence of binarized image pixels (roiline.m), each pixel was
mapped to its nearest surface vertex (spherelookup_imagexy2vertidx.m),
and a sequence of unique vertices was calculated (to avoid consecutively
repeating vertices). Note that the determined sequence of vertices are not
necessarily connected by edges of the cortical surface, nor do they
necessarily form perfectly straight lines (the lines may be slightly jagged
in real space). Cortical distance was calculated as the Euclidean distance
between successive pairs of vertices, where distance is measured with

respect to the white surface. Data associated with the vertices were then
visualized in various ways, as described in the figure caption.

2.11.1. Surface voxels
We devised a visualization technique, which we term ‘surface voxels’,

to better understand the impact of cortical curvature on surface-based
visualizations of MRI data. The technique involves projecting 3D voxels
of known spatial dimensions onto the cortical surface and then visual-
izing the results. First, we construct a synthetic 3D volume with isotropic
voxels such that each spatial dimension modulates a distinct bit of a 3-bit
binary number. For example, in the x-dimension, voxels alternate be-
tween þ 0 and þ 1; in the y-dimension, voxels alternate between
þ 0 and þ 2; and in the z-dimension, voxels alternate between
þ 0 and þ 4. The resulting volume contains integers ranging from 0 to 7.
We then project this volume using nearest-neighbor interpolation onto a
metrically accurate cortical surface (e.g. pial). Finally, we visualize the
surface values, either on the same cortical surface or on some other
isomorphic surface (e.g. inflated).

Results of the surface-voxels technique are shown in Fig. 4. The ‘jet’
colormap used here has no particular significance. The critical point is

Fig. 8. Static susceptibility effects are in partially consistent locations across subjects. Here we assess group-wise consistency using the 5 subjects from the main
experiment plus an additional 5 subjects (see Methods). A, Group-average curvature. Curvature values were thresholded (sulci¼ 0, gyri¼ 1), transformed to fsaverage,
and then averaged across subjects. Results are shown (posterior view, fsaverage spherical surface), with white lines drawn on prominent sulci, red outlines indicating
approximate locations of retinotopic visual areas, and blue outlines indicating the ROI used to summarize results in this paper (see Fig. 1D). Regions with high
consistency across subjects appear either dark gray or light gray. B, Group-average darkness. We identified vertices for which bias-corrected EPI intensity at any depth
is less than 0.75 (see Fig. 5A, last column). We transformed the resulting vein mask (dark¼ 0, non-dark¼ 1) to fsaverage, dilated the mask such that single vertices
expand to a circle with diameter 3mm, and averaged the mask across subjects. Results are shown (same format as panel A). Regions with high consistency appear
either dark brown or light brown. Notice that darkness tends to occur more in gyri than in sulci. C, Quantitative summary of group-average curvature. The red line
shows the empirically observed distribution of group-average curvature across vertices, with the width of the ribbon indicating variability of results calculated
independently for each hemisphere. The gray dotted line shows a null distribution produced by shuffling curvature values across vertices before averaging across
subjects; the pink dotted line shows a null distribution produced by rotating curvature values on the fsaverage sphere before averaging across subjects (random amount
of rotation for each subject; rotation performed with respect to a vector pointed from the center of the sphere towards the center of the ROI). The gray solid line shows
the theoretical expectation for the null distribution as the number of subjects goes to infinity. D, Quantitative summary of group-average darkness (same format as
panel C). Both curvature and darkness exhibit greater intersubject consistency than expected under the null hypothesis.
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that every color change indicates a transition from one voxel to another
along any of the three spatial dimensions. Thus, the spatial pattern of
color patches serves as a “measuring tape” that provides physical units
and that can be used to understand how different surface representations
relate to one another (e.g. white vs. inflated vs. sphere). Note that simple
modifications to the surface-voxels technique (e.g. modulating voxels
only along one dimension) can be used to visualize how EPI slices
intersect the convoluted cortical surface. Also, note that the nearest-
neighbor interpolation used in the surface-voxels technique for map-
ping between voxels and vertices is for visualization purposes only, and is
not necessarily recommended as a general approach for surface-based
processing of fMRI data.

2.12. Fourier analysis of fMRI activity patterns

We used Fourier analysis to quantify the spatial frequency content of
BOLD activity patterns. First, we defined a large square region on the
flattened ventral temporal cortex surface for each hemisphere. The me-
dian size of this region across subjects and hemispheres was
34mm! 34mm. Next, we generated a surface visualization by linearly
interpolating vertex values onto image pixels (linear interpolation avoids
the edges produced by nearest-neighbor interpolation). We took the
resulting image, applied a Hanning window to reduce wraparound ef-
fects, and then band-pass filtered the image into different subbands (5th-
order Butterworth filter). Subbands reflect the partitioning of frequencies

Fig. 9. Spatial relationship between static susceptibility effects and evoked BOLD responses. To highlight spatial detail, we zoom in on a small section of
flattened early visual cortex (Subject S1, left hemisphere). A, Static susceptibility effects (Depth 1). Fine-scale detail in bias-corrected EPI intensity is present in high-
resolution data (7 T, 0.8-mm voxels), is reproduced in an independent scan session (‘Re-test’), but is lost in low-resolution data (3 T, 2.4-mm voxels). B, Evoked BOLD
responses. We compare static susceptibility effects (first row) with the strength of BOLD responses evoked by the experiment (second row), trial-to-trial variability of
evoked BOLD responses (third row), the ratio of these two quantities (fourth row), and the strength of evoked BOLD responses in low-resolution data (fifth row). Static
susceptibility effects co-localize with strong BOLD responses and high trial-to-trial BOLD response variability. Spatial biases in the pattern of BOLD activity persist in
low-resolution data, though fine-scale structure is attenuated.
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into bins of size 0.5 on a logarithmic scale, with bin centers positioned at
1 cycle per 27¼ 128mm, 1 cycle per 26.5¼ 90.5mm, 1 cycle per
26¼ 64mm, and so on (see Fig. 12). Finally, we computed the total
power present in each subband, and expressed this as a percentage of the
total summed power. Note that the spatial frequency results are artifi-
cially truncated at low spatial frequencies due to the limited size of the
square regions.

We applied the Fourier analysis described above to the beta weights
evoked in the fLoc experiment. However, an important concern is that
power observed in a subband may simply reflect measurement noise. To
correct for the effects of measurement noise, we devised an extrapolation
strategy. We computed the spatial frequency content observed as the
number of condition-splits averaged together increases from 1 to 6 (re-
sults were averaged across 10 random samples drawn for each number of
condition-splits). Then, under the assumption of Gaussian noise, we fit a
line relating the standard deviation of the noise level to the observed
power. Finally, based on this line, we calculated the predicted power for
the case of zero noise. For example, let p1, p2, …, p6 represent the power
in a particular subband observed when averaging 1, 2, …, 6 condition-
splits. The relationship between noise level (x-axis) and power (y-axis)
is given by data points located at the coordinates (σ/sqrt (1), p1), (σ/sqrt
(2), p2), …, (σ/sqrt (6), p6) where σ is an arbitrary positive constant. A
line is fit to these data points and the point at which the line crosses the y-
axis indicates the predicted power for a noise level of zero (i.e. infinite
number of condition-splits).

The Fourier analysis was also applied to unthresholded curvature
values (provided by FreeSurfer) and to bias-corrected EPI intensities. To
remove uninteresting DC effects, we subtracted 1 from bias-corrected EPI
intensities before performing the Fourier analysis. Results for each
quantity of interest were averaged across hemispheres and, if applicable,
stimuli.

2.13. Data and code availability statement

An archive of the code used in this study is provided at https://osf.io/
qcpgh/. De-identified data used in this study will be made available for
unrestricted use upon request.

3. Results

In the main experiment of this paper, we collected sub-millimeter GE-
EPI data (7 T, isotropic 0.8-mm voxels, 2.2-s TR, 84 slices) in posterior
human cortex while subjects (n¼ 5) viewed images of different stimulus
categories (4-s trials, 8 images per trial). The slice prescription covered
the entire occipital cortex and parts of temporal and parietal cortex
(Fig. 1A).

3.1. Anatomical pre-processing

We start with a description of anatomical processing, the results of
which are a precursor to the analysis of the functional data. We acquired
whole-brain T1-and T2-weighted volumes for each subject (3 T, isotropic
0.8-mm voxels). The T1 volumes were processed using FreeSurfer to
generate cortical surface representations. To ensure that the surfaces
have sufficiently high resolution to support the functional measurements
and to allow results to be examined as a function of cortical depth, we
included two additional steps beyond standard FreeSurfer processing: we
increased the density of surface vertices by a factor of two, and we
created 6 surfaces spaced equally between 10% and 90% of the distance
between the pial surface and the boundary between gray and white
matter. An example of the resulting surfaces is shown in Fig. 2. Our
method for visualizing surface-based data is to perform nearest-neighbor
mapping from surface vertices to image pixels (Fig. 1C). This avoids extra

Fig. 10. Quantitative summary of the relationship between static susceptibility effects and evoked BOLD responses. A–C, Relationship between bias-corrected
EPI intensity and strength of evoked BOLD responses (panel A), variability of evoked BOLD responses (panel B), and the ratio of these two quantities (panel C). Insets
show results for individual subjects. In each panel, the distributions are biased towards the upper left. Notice that the distributions are complex, nonlinear, and highly
non-Gaussian and are not well described by simple summary metrics such as Pearson's r. With this caveat in mind, the group-level distributions in panels A–C reflect
correlations of r¼ % 0.31, r¼ % 0.63, and r¼ % 0.01, respectively. D, Detailed view of a section of flattened ventral temporal cortex (Subject S4, right hemisphere,
Depth 1). The last image depicts the four partitions created by the dotted lines in panel A. The purpose of this visualization is to clarify which vertices in panel A
correspond to which spatial locations in the cortical maps. As indicated by the legend below the image, the four partitions in panel A are labeled using white, cyan, red,
and black. The image contains much more white than cyan, indicating that large evoked BOLD responses (mean absolute beta greater than 5%) are almost always
associated with the presence of static susceptibility effects (bias-corrected EPI intensity less than 1). E, Zoomed-out view. Here we replot quantities from panel D on a
posterior view of the spherical surface. The white rectangle corresponds approximately to the section visible in panel D. These plots provide a sense of scale and
highlight the large amount of fine-scale detail present in the datasets.
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computations and ensures that what is displayed directly reflects the
values associated with surface vertices.

The detailed view of cortical surface representations in Fig. 2 illus-
trates a few important points. First, the quality of the surface re-
constructions is high; this may be due, in part, to our averaging of
multiple T1 volumes to increase contrast-to-noise ratio before FreeSurfer
processing (see Methods). For a comprehensive summary of surface
quality, please see Supplementary Movie 1. Second, there is an isomor-
phism between surfaces such that corresponding vertices are oriented
approximately perpendicular to the local surface curvature. This ensures
that comparison of results across surfaces reflects primarily changes in
cortical depth as opposed to changes in position along the cortical sur-
face. Third, the equidistant approach to cortical depth produces surfaces
that are positioned differently compared to surfaces produced by an
equivolume approach (Waehnert et al., 2014). Although equivolume
surfaces would likely be better matched to cortical layers defined by
cytoarchitecture (Waehnert et al., 2014), the practical benefits may be
limited for currently feasible studies (Kemper et al., 2018). We use an
equidistant approach to maximize simplicity and aid interpretability in
our assessment of sub-millimeter fMRI.

To assess the resolution of the surfaces we constructed, we quantified

the distribution of edge lengths (Fig. 3A) and depth separations (Fig. 3B).
The results reveal that the majority of edge lengths and depth separations
fall well below 0.8mm. This indicates that the vertex density of the
surfaces is high enough to capture fine-scale patterns that might be
present in the functional data. We also observe that edge lengths are
highly dependent on cortical curvature. Specifically, at superficial
cortical depths, vertex density is relatively high in and around sulci but
relatively low in and around gyri. This effect is due to the geometry of
cortex and is illustrated by the black squares in Fig. 2C: whereas the black
square in the sulcus contains many Depth 1 vertices, the black square in
the gyrus contains just one Depth 1 vertex. We discuss the consequences
of this asymmetry between sulci and gyri later in this paper.

3.2. Functional pre-processing

With cortical surface representations in place, we proceeded to
analyze the functional data. EPI volumes were pre-processed by per-
forming one temporal and one spatial resampling. The temporal resam-
pling corrected differences in slice acquisition times and involved one
cubic interpolation of each voxel's time series. The spatial resampling
corrected head motion and EPI distortion and mapped functional

Fig. 11. Line profiles demonstrate reliability of fine-scale BOLD activity patterns. A, Location of line. The dotted line indicates the sequence of vertices (line)
selected for this figure (Subject S1, right hemisphere, flattened ventral temporal cortex). B, Position of vertices in native 3D space. C, Cross-sectional view of cortex.
Vertices are arranged along the x-axis as in panel D. Light and dark arrows indicate compression and expansion of outer depths (as in Fig. 4B). D, Line profiles of BOLD
activity measured in two independent high-resolution 0.8-mm 7 T scan sessions (1st and 2nd columns) and in a low-resolution 2.4-mm 3 T scan session (3rd column).
Tick marks on the x-axis indicate cumulative Euclidean distance of the vertices in the white-matter surface. Background shading indicates bias-corrected EPI intensity
and black dots mark vertices that fall below the 0.75 threshold. Ribbons indicate the amplitude of the BOLD response (beta weight) evoked by different stimulus
categories, with ribbon width indicating the standard error across trials. E, Detailed view of line profiles highlighted in panel D. The L2-normalized plot is obtained by
dividing the beta weights observed at each vertex by their vector length.
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volumes onto cortical surface representations; this was achieved through
one cubic interpolation of each volume (Fig. 1B). The pre-processing
ultimately produced time-series data for each vertex of the depth-
dependent cortical surfaces (Depth 1–6). Performing just two simple
pre-processing operations has the benefit of maximizing transparency
with respect to how raw EPI volumes are transformed to a surface-based
representation. Quality-control inspections confirm that the functional
pre-processing yielded good results (Supplementary Movies 1–2).

3.3. Curvature causes depth-dependent distortion

In exploring our fMRI data with regards to cortical depth, we noticed
an important effect induced by cortical curvature. The effect is most
clearly conveyed using a ‘surface voxels’ visualization technique in which
3D voxels of known spatial dimensions are sampled using nearest-
neighbor interpolation onto metrically accurate surfaces and then visu-
alized on other surfaces (see Methods). This technique reveals that sur-
face voxels are relatively well behaved for inner depths but are spatially
distorted for outer depths. Specifically, we see that 2.0-mm voxels
sampled onto the white-matter surface produce color patches that are
relatively homogenous in size and shape (Fig. 4A, right column), but 2.0-
mm voxels sampled onto the pial surface produce color patches that have
substantial heterogeneity in size and shape (Fig. 4A, middle column).
This heterogeneity is tightly linked to cortical curvature: as one pro-
gresses from inner depths to outer depths, there is a compression of color
patches in and around gyri but expansion of color patches in and around
sulci (Fig. 4B). These effects cause variations in resolution and distortions
in visualization. Note that the choice of 2.0-mm voxels is not critical but
serves as a convenient resolution at which to visualize the underlying

effect.
The distortion effect stems from the desire to visualize data from

different cortical depths on a fixed surface. Because vertex positionings in
the inflated, sphere, and flattened surfaces generated by FreeSurfer
minimize distortion with respect to the white surface (as opposed to the
pial surface), voxels sampled onto inner-depth surfaces (like the white
surface) appear relatively uniform and well-behaved. However, the sit-
uation is more complicated when sampling onto outer-depth surfaces
(like the pial surface). In regions where cortex folds inward (sulci),
cortical surface distance is smaller for outer depths compared to inner
depths (see Fig. 2C, upper square), and so a smaller number of voxels
traverse outer depths compared to inner depths. This causes an apparent
expansion of color patches in and around sulci when viewing data from
outer depths. Conversely, in regions where cortex folds outward (gyri),
cortical surface distance is larger for outer depths compared to inner
depths (see Fig. 2C, lower square), and so a greater number of voxels
traverse outer depths compared to inner depths. This causes an apparent
compression of color patches in and around gyri when viewing data from
outer depths. Note that the distortion effect characterized here is not
specific to our analysis and visualization approach, but is a general issue
that affects any visualization of depth-dependent cortical data (see
Discussion).

3.4. Mean EPI intensity reveals extensive and systematic susceptibility
effects

It has long been recognized that veins manifest as dark intensities in
high-resolution T2*-weighted images (Menon et al., 1993; Ogawa et al.,
1990; Olman et al., 2007; Shmuel et al., 2010; Siero et al., 2011), and we

Fig. 12. Quantification of spatial frequency content. After applying a Hanning window, we perform a Fourier transform of values placed on a section of flattened
ventral temporal cortex and express the power in different spatial frequency subbands as a percentage of the total summed power (see Methods). A, Summary of
results. Each ribbon indicates the mean and standard error across subjects. The red line shows results for unthresholded curvature values; the green line shows results
for bias-corrected EPI intensities from Depth 1; and the blue line shows results for BOLD response amplitudes (beta weights). B, Results at high-vs. low-resolution
(Subject S1). To facilitate comparison, the low-resolution results are scaled to match (in a least-squares sense) the high-resolution results over the indicated range of
low-frequency subbands. C, Example BOLD activity patterns (Subject S1, right hemisphere, ‘faces’ stimulus category). Images show independent measurements (first
two columns, 24 trials per measurement) or the average across all measurements (third column, 144 trials). D, Illustration of band-pass decomposition for the region
marked with a red square in panel C. For visibility, images have been contrast-enhanced (colormap range is 1/3 of the range in panel C).
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indeed observe dark spots in the midst of brain tissue in our fMRI vol-
umes (see Fig. 1B and Supplementary Movies 1–2). These dark spots
reflect dephasing of spins caused by magnetic field gradients located
around veins and the loss of intravascular blood signal due to the very
short T2 and T2* of venous blood at high magnetic fields (Duong et al.,
2003; Oja et al., 1999). Given that both of these effects stem from sus-
ceptibility gradients caused by the presence of deoxyhemoglobin, we
refer to the effects collectively as ‘susceptibility’ effects. Because veins
degrade the spatial specificity of fMRI signals (Menon, 2012; Ugurbil,
2016), we sought to investigate more closely the nature of susceptibility
effects in our high-resolution fMRI dataset. A unique feature of our
dataset is that susceptibility effects can be assessed across a large expanse
of cortex and across cortical depth.

We computed the mean of the EPI time-series data obtained for each
surface vertex and corrected for coil bias by dividing by a 3D polynomial
(see Methods). We then created surface visualizations of these bias-
corrected EPI intensities for each subject (Fig. 5). Since these maps
reflect time-averaged intensities, they indicate static (unchanging) sus-
ceptibility effects and can be viewed as providing anatomical information
about the brain. The results reveal that there are extensive static sus-
ceptibility effects for each subject and that these effects have fine-scale
spatial structure. Moreover, we see that the susceptibility effects are
more pronounced at outer depths compared to inner depths. Some of the
susceptibility effects that are visible are not due to veins but rather to the
air-tissue interface near the ear canals (locations 1, 2, and 3). Also, we
mark a few locations to help convey the spatial correspondence across
different surface views (locations 3, 4, and 5).

For quantitative assessment of susceptibility effects, we computed
distributions of bias-corrected EPI intensities (Fig. 6A). The distributions
exhibit a mode near 1, indicating that many intensities are neither sub-
stantially brighter nor darker than average. However, there is a clear
heavy leftward tail, indicating that low intensities are often observed.
This tail is especially pronounced at outer depths, consistent with our
previous inspections (see Fig. 5A). Near the mode of the distributions,
there is a slight general increase in intensity from inner to outer depths;
this might be due to partial volume effects (white matter produces lower
T2* intensity compared to gray matter).

To establish a threshold for separating dark vertices from non-dark
vertices, we fit a Gaussian Mixture Model to intensity values and deter-
mined the value below which a given vertex is more likely drawn from a
Gaussian distribution of dark intensities than from a Gaussian distribu-
tion of typical intensities (Fig. 6A, inset; see also Methods). The deter-
mined value is 0.75, indicating that a vertex is classified as dark if its
intensity is less than 75% of the average intensity value. Using this
threshold, we proceeded to quantify the prevalence of dark vertices as a
function of depth and cortical curvature (Fig. 6B). Consistently across
subjects, dark vertices are substantially more prevalent at outer depths
(average percentage across subjects is 16.7% at Depth 1 versus 4.1% at
Depth 6) and there is some bias for dark vertices to be located in gyri
compared to sulci (average percentage across subjects is 9.4% for gyri
versus 6.3% for sulci). This is consistent with the fact that large draining
veins are located on the surface of the brain.

While we interpret dark EPI intensities as reflecting
deoxyhemoglobin-induced susceptibility effects associated with veins, it
is important to consider other factors that might produce such effects.
Theoretically, partial volume effects between gray matter and cerebro-
spinal fluid, imperfect correction of EPI spatial distortion, inaccurate
cortical surface reconstructions, and inaccurate co-registration of func-
tional data and cortical surfaces could all lead to low intensities being
assigned to surface vertices. For example, an inaccurate cortical surface
that extends outside the brain would lead to erroneous dark EPI in-
tensities. However, inspection of our pre-processing results indicates that
they are of high quality (Supplementary Movies 1–2). In addition, we
find that manual edits to T1 segmentation yield relatively minor changes
in EPI intensity patterns (Supplementary Fig. 1), suggesting that cortical
surface reconstructions are generally robust. We also show that EPI

intensities exhibit sensible behavior as the co-registration between the
EPI and T2 volumes is optimized (Supplementary Movie 6). Finally, we
demonstrate that T1 gray-matter intensities sampled onto cortical surface
representations are relatively homogeneous (Supplementary Fig. 3),
which would not be the case for inaccurate cortical surfaces. Thus, we
believe that venous effects are the predominant contributor to the
observed dark EPI intensities. We recognize that although these various
visual inspections can reveal gross errors, it is nonetheless possible that
small local errors persist, underscoring the need for careful inspection in
specific brain regions that may be of interest.

3.5. Volume-based visualization confirms venous source of susceptibility
effects

To gain additional insight into the nature of the susceptibility effects,
we examined our data using volume-based visualization methods. In one
analysis, we compared a slice of EPI data against the T1 and T2 volumes
interpolated to match the EPI slice (Fig. 7A). The results show that dark
EPI intensities are located in anatomically appropriate locations in and
near gray matter on the T1 and T2 images. The large regions marked by
locations 1 and 2 correspond to the transverse sinuses, which are very
large veins that drain blood from the brain towards the heart.

Given the tube-like structure of blood vessels, veins are likely to
manifest as small ellipsoids on single slices of data (as in Figure 7A, 3rd
column). For a more intuitive visualization of the vasculature, we per-
formed an analysis in which we calculate the minimum intensity
observed in the EPI data over a 1-cm slab positioned in occipital cortex
(Fig. 7B, lower left). This minimum intensity projection analysis (Haacke
et al., 2009; Ward et al., 2018) reveals the branching, tree-like structure
of the vasculature (Fig. 7B, top row, 2nd column) and is consistent with
the results of the same analysis applied to a susceptibility weighted im-
aging (SWI) scan acquired at 0.4-mm resolution (Fig. 7B, top row, 1st
column). To understand how results manifest at more standard fMRI
resolutions, we repeated the minimum intensity projection analysis for
simulated low-resolution 2.4-mm EPI data, obtained by spatially
smoothing the high-resolution 7 T EPI data (Fig. 7B, top row, 3rd col-
umn), as well as actual low-resolution 2.4-mm 3 T EPI data (Fig. 7B, top
row, 4th column). The results show that simple smoothing produces
reasonably accurate predictions of the low-resolution data and that the
spatial structure of the vasculature is consistent across the different
measurement resolutions (0.4mm vs. 0.8 mm vs. 2.4mm). The main
difference appears to be that because of blurring, the structure of the
vasculature is not readily visible in low-resolution fMRI data. Note that
the comparison between the spatially smoothed 7 T data and the 3 T data
is only approximate, given the fact that vascular components are
weighted differently at different magnetic field strengths.

3.6. Venous effects are in partially consistent locations across subjects

We investigated one final issue regarding static susceptibility effects
caused by veins. From a practical standpoint, a neuroscientist might
discount the effects of veins under the working assumption that venous
effects across the cortical surface are in inconsistent locations across
subjects and would therefore “average out” in a group analysis. To
evaluate this assumption, we quantified the consistency of dark EPI in-
tensities across a set of 10 subjects (the 5 subjects from the main
experiment plus 5 additional subjects). The analysis involved identifying
vertices with bias-corrected EPI intensity less than 0.75 at any depth,
transforming the resulting vein masks to fsaverage space, slightly dilating
the masks (single vertices expand to a circle with diameter 3mm), and
then averaging themasks across subjects (Fig. 8B). Themotivation for the
dilation is that studies quantifying effects at the group level are likely
operating at a scale that is at least as coarse as 3mm due to ROI aver-
aging, spatial smoothing, limitations on acquisition resolution, etc.
Qualitatively similar effects are observed without dilation and with
different amounts of dilation (Supplementary Fig. 4). Note that although
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we use the term ‘vein mask’, it is important to rule out other potential
sources of dark EPI intensities (see discussion at the end of Section 3.4).

Inspection of the group-average vein mask (Fig. 8B) suggests consis-
tency of static susceptibility effects across subjects. To substantiate this
impression, we compared the empirically observed distribution of group-
average mask values to a null distribution obtained by shuffling mask
values across vertices before averaging across subjects (Fig. 8D gray
dotted line), as well as to the theoretical expectation for the null distri-
bution as the number of subjects goes to infinity. We also repeated the
entire visualization and quantitative analysis for thresholded curvature
values, which are easy to interpret and provide a benchmark for com-
parison (Fig. 8A and C). Since fsaverage alignment matches cortical
folding across subjects, it is not surprising that group-average curvature
values exhibit high intersubject consistency. However, the results indi-
cate that the group-average vein mask exhibits consistency levels that
approach the consistency levels of group-average curvature. This sug-
gests there is value in developing and using atlases that characterize
location of the vasculature across subjects (Bernier et al., 2018; Huck
et al., 2018; Viviani, 2016; Ward et al., 2018) in order to inform analysis
of fMRI data.

3.7. Veins substantially influence evoked BOLD responses

Thus far, we have investigated static susceptibility effects observed in
the mean of the EPI time-series data. We now turn to dynamic BOLD
effects in the EPI data (i.e. BOLD responses driven by the experiment).
We fit a general linear model (GLM) to the time-series data in order to
estimate the amplitude of the BOLD response evoked by each stimulus
condition (beta weights). To quantify reliability, we computed the
standard error of amplitude estimates across trials (beta errors).

Inspecting a representative section of cortex (Fig. 9), we notice
several prominent effects. First, BOLD response amplitudes co-vary
strongly with cortical depth, with smaller amplitudes observed at inner
depths (Fig. 9B, second row; see Supplementary Fig. 5 for comprehensive
results). Second, there exists fine-scale detail in the pattern of BOLD
response amplitudes across the cortical surface (Fig. 9B, second row). The
amount of detail can be gauged by comparing the results with what is
observed for low-resolution 2.4-mm data (Fig. 9B, bottom row) and by
comparing the results with the maximum amount of detail that can be
achieved given our processing approach (Fig. 9A, first column). Third,
the BOLD activity patterns observed in the low-resolution 2.4-mm data
(Fig. 9B, bottom row) appear consistent with those observed in the high-
resolution 0.8-mm data (Fig. 9B, second row)—the low-resolution pat-
terns are like the high-resolution patterns, but blurrier.

Most importantly, the inspections provide insight into the relation-
ship between BOLD activity patterns and static susceptibility effects. The
spatial structure of EPI intensities (Fig. 9B, top row) shows a strong
relationship with the pattern of evoked BOLD responses (Fig. 9B, second
row) as well as with the pattern of trial-to-trial BOLD response variability
(Fig. 9B, third row). Specifically, the darker the EPI intensity, the
stronger the BOLD response (signal) (see also Fig. 4 in Moerel et al.,
2018) and the larger the trial-to-trial variability (noise). The increase in
the former surpasses the increase in the latter, and so the overall effect is
that dark EPI intensities are associated with increases in signal-to-noise
ratio (Fig. 9C, fourth row). The strong association between EPI in-
tensity and evoked BOLD responses is also evident in volume-based vi-
sualizations, which show that voxels with strong BOLD responses follow
the snake-like structure of the venous vasculature (Fig. 7B). There is an
obvious explanation for the observed relationship between static and
dynamic susceptibility effects: the same biological structur-
e—veins—causes dephasing in a static sense and also leads to strong
BOLD effects.

For quantitative assessment of these effects, we constructed 2D his-
tograms of the relationship between EPI intensity and the various BOLD
response metrics. The results confirm that dark EPI intensities are asso-
ciated with large BOLD responses (Fig. 10A) and large BOLD response

variability (Fig. 10B), with the former effect outweighing the latter effect
(Fig. 10C). These results are consistently found in each individual subject
(Fig. 10A–C, insets). To understand how the quantitative results relate to
surface visualizations, we partitioned the 2D space characterizing BOLD
response magnitudes (Fig. 10A) and color-coded each partition on a
section of cortex (Fig. 10D, last column). This visualization reveals that
strong BOLD responses are almost always found in locations that also
exhibit dark EPI intensities. However, it is important to keep in mind that
there is some spread and heterogeneity in the observed associations:
many cortical regions exhibit fairly uniform BOLD responses that are well
matched to EPI intensities (Fig. 10D, green arrow), but there are in-
stances where there exists fine-scale heterogeneity in the pattern of BOLD
responses that does not seem to have a counterpart in the pattern of EPI
intensities (Fig. 10D, yellow and blue arrows).

3.8. Line profiles reveal measurement reliability and the impact of veins

Most of our assessments thus far have involved image-based surface
visualizations. Although such visualizations allow results for a large
number of cortical locations to be viewed in a single glance, they are
somewhat qualitative and it is difficult to assess the reliability of the
displayed results. As a complementary visualization, we generated ‘line
profiles’ in which a series of vertices across the cortical surface are
selected and values associated with these vertices are visualized using
display elements other than color (see Methods). Though these line
profiles show only a small portion of the data, they are very informative:
they allow quantitative examination of a large number of quantities
associated with each vertex as well as their associated reliability. Line
profiles are a useful alternative to cross-sectional image-based ap-
proaches for visualizing depth-dependent data (see De Martino et al.,
2015; Goncalves et al., 2015).

Example line profiles for a sequence of vertices proceeding lateral to
medial on the fusiform gyrus are shown in Fig. 11. Colored ribbons
indicate BOLD response amplitudes as a function of distance along the
cortical surface (Fig. 11D, x-axis), and separate ribbons are plotted for
different cortical depths (Fig. 11D, different rows). (Note that the ribbons
are not conventional layer profiles that show responses through the
cortical sheet, but are profiles showing responses along the cortical
sheet.) The thickness of the ribbons indicate the standard error of
amplitude estimates across trials. The results show that there exists fine-
scale structure in BOLD response amplitudes and this structure is reliable
not only within a given scan session but also across scan sessions
(Fig. 11D, columns 1 and 2). Consistent with the 0.8-mm acquisition,
distinct BOLD responses are found for nearby vertices along the cortical
surface as well as nearby vertices through the cortical thickness.

The line-profile visualization also provides intuition regarding how
veins manifest in the fMRI measurements. Veins give rise to static sus-
ceptibility effects as reflected in dark EPI intensities as well as dynamic
susceptibility effects as reflected in large BOLD response amplitudes
(location 1). These effects can be spatially extensive and can extend
across cortical depths (compare locations 1 and 2). Veins amplify BOLD
response amplitudes, and can cause sudden bumps in percent signal
change (location 3). In cortical locations unaffected by static suscepti-
bility effects, selectivity for stimulus category (defined as the ratio be-
tween activity from different categories) appears to be strong (locations 4
and 5). Comparing two nearby cortical locations, strikingly different
results can be observed. Whereas at one location we can find dark EPI
intensity, large BOLD response amplitude to faces, and relatively weak
stimulus selectivity (location 6), at another location we can find non-dark
EPI intensity, small BOLD response amplitude to faces, and relatively
strong stimulus selectivity (location 7). Normalizing BOLD response
amplitudes at each vertex clarifies that selectivity at the first location is
weaker than at the second (Fig. 11E). (Note that these conclusions are
contingent on selectivity being expressed as ratios of activity magnitudes,
which we believe is an appropriate definition; if selectivity were instead
quantified by subtracting activity magnitudes, locations 6 and 7 would be
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deemed to have similar levels of selectivity in that they both exhibit
approximately 4% higher BOLD response to faces compared to other
stimulus categories.)

Finally, the line profiles provide insight into the relationship between
high-resolution (7 T, 0.8mm) and low-resolution (3 T, 2.4mm) mea-
surements. At low resolution, static susceptibility effects caused by veins
are often obscured by blurring (compare locations 1 and 8) but occa-
sionally survive (location 9). As expected, low-resolution measurements
result in a loss of fine-scale detail in BOLD activity patterns (compare
locations 10 and 11), but the low- and high-resolution measurements still
exhibit consistency at the coarse scale. In some instances, venous
amplification of BOLD response amplitudes can be clearly seen in the
low-resolution data (location 12) and this amplification is greater at
outer depths than inner depths (compare locations 12 and 13).

The line profiles in Fig. 11 reflect just one small portion of data from
one subject. The line chosen for this visualization was arbitrary, and is
simply intended to illustrate examples of effects that we find in our data.
We acknowledge that the observations are somewhat anecdotal;
achieving a systematic understanding of venous effects beyond the basic
relationships shown in Fig. 10 is a subject for future research. Given the
diversity and complexity of venous effects, we suggest that researchers
explore and inspect line profiles at different positions and angles along
the cortical surface.

3.9. Fourier analysis of BOLD activity patterns

To verify earlier suggestions that fine-scale detail is present in BOLD
activity patterns (e.g., Figs. 9B, 10D and 11D), we performed a
comprehensive Fourier analysis of our data. In this analysis, patterns of
results on the cortical surface are decomposed into different spatial fre-
quency bands and quantified. To guard against the possibility that power
at high spatial frequencies in BOLD activity patterns may simply reflect
measurement noise, we corrected for the effects of noise using an
extrapolation procedure (see Methods).

We first performed the Fourier analysis on unthresholded curvature
values, as they provide a useful point of comparison. Results indicate that
curvature information resides primarily at low spatial frequencies with
nearly all variance falling below 1 cycle per 4mm (Fig. 12A, red trace).
Next, we proceeded to analyze bias-corrected EPI intensities. We find
that compared to curvature, information regarding EPI intensities is
present at higher spatial frequencies, with variance observed up to 1
cycle per 1mm (green trace). Lastly, we considered BOLD activity pat-
terns evoked by the experiment. The spatial frequency content of these
patterns is critical, as the utility of sub-millimeter fMRI depends on being
able to measure high spatial frequencies well. We find that much infor-
mation in BOLD activity patterns resides at low spatial frequencies (e.g.,
between 1/32 and 1/8 cycles/mm), consistent with recent studies
(Mandelkow et al., 2017; Sengupta et al., 2017). However, information
extends all the way up to 1 cycle per 1mm (blue trace). Interestingly, we
observe a bump in power near 1 cycle per 6mm; the similarity in the
location of this bump to the results obtained for bias-corrected EPI in-
tensities suggests that veins introduce features in and around this spatial
frequency and these features are revealed in sub-millimeter fMRI
measurements.

To further substantiate the claim that fine-scale detail exists in our
BOLD activity measurements, we directly compared Fourier analysis re-
sults across high- and low-resolution measurements in the same subject.
This analysis confirms that the high-resolution measurements yield
substantially more information at high spatial frequencies (Fig. 12B), in
both bias-corrected EPI intensities as well as BOLD activity patterns. We
also confirmed that fine-scale detail visible in high-resolution measure-
ments of BOLD activity patterns is reproducible across independent
measurements (Fig. 12C). Finally, we generated a visualization of the
Fourier decomposition for an example cortical patch (Fig. 12D). This
visualization illustrates how the analysis works and confirms the

existence of high spatial frequency features in BOLD activity patterns.

4. Discussion

4.1. Contributions of the present work

In this paper, we collected sub-millimeter fMRI data (isotropic 0.8-
mm voxels) in a simple visual experiment and investigated the quality
and nature of the data as well as how venous effects manifest in the data.
The contributions of the present work comprise novel analysis method-
s—including an approach to pre-processing and visualization that em-
phasizes simplicity and directness (Figs. 1 and 2), time-varying fieldmap
correction (Supplementary Movies 2–4), and methods for quantifying
spatial sampling (Figs. 3 and 12) and the impact of EPI distortion on
spatial resolution (Supplementary Fig. 2)—as well as novel visualization
methods—including surface voxels (Fig. 4), line profiles (Fig. 11), and
various quality-control assessments (Supplementary Movies 1, 2, 6;
Supplementary Fig. 3). In terms of findings, we have shown that our
measurements of evoked BOLD responses have fine-scale detail and are
highly reliable (Figs. 7, 11 and 12). However, BOLD response measure-
ments are systematically impacted by cortical depth and curvature
(Figs. 2–4) and exhibit a clear relationship to static susceptibility effects
(Figs. 7, 9–11), which indicate the influence of veins (Fig. 7). These
venous effects are present in extensive portions of cortex and have sys-
tematic locations within and across subjects (Figs. 5, 6 and 8). Thus, to
revisit the question that motivated this study, we conclude that our
acquisition and analysis of sub-millimeter fMRI data provide high-quality
measurements of BOLD activity patterns, but these patterns are likely
providing a distorted view of fine-scale neural activity.

4.2. Measurement quality

It is useful to consider how well BOLD activity patterns are measured
as an issue distinct from how well those activity patterns reflect under-
lying patterns of neural activity. From this purely measurement-oriented
perspective (which ignores potential specificity loss caused by veins), we
have shown that our acquisition protocol, experimental design, and
analysis procedures produce reliable BOLD activity patterns (e.g.
Fig. 11). This is not a trivial outcome given the challenges of thermal and
physiological noise that are especially acute in high-resolution functional
imaging. Furthermore, we are able to accurately position these BOLD
signals with respect to the cortical surface (e.g. Fig. 2, Supplementary
Movie 1). This is an appealing outcome since neuroscience applications
require not only high-quality functional images but also the ability to
localize and interpret signals in these images with respect to the convo-
luted cortical surface.

Besides obtaining reliable measurements, achieving high spatial res-
olution is a central goal of sub-millimeter fMRI. Howwell did we do? The
nominal spatial resolution of our data is 0.8mm, but the effective reso-
lution of our functional measurements is presumably lower and depends
on a complex combination of factors that include blurring in the phase-
encode direction due to T2*-decay during slice acquisition, potential
loss of resolution in the phase-encode direction due to EPI distortion
(parts of the image may be compressed due to off-resonance effects; see
Supplementary Fig. 2 for a quantification of these effects), and loss of
resolution due to head displacement over the course of the scan session
(using interpolation to estimate signal intensity for a cortical location
that lies in between two slices leads to resolution loss). To maximize our
effective spatial resolution, we designed appropriate analysis procedures.
This included projecting the functional data onto dense cortical surfaces,
using a single spatial interpolation in the pre-processing of the functional
data, and incorporating time-varying estimates of the magnetic field to
improve the accuracy of EPI undistortion and thereby improve spatial
stability over time. Ultimately, what matters is the quality of the final
results, and we have shown that high spatial frequency information can
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indeed be found in the functional measurements, both in the mean of the
BOLD time-series data and in fluctuations of the BOLD time-series data
driven by the experiment (see Fig. 12). Moreover, we have shown that
low-resolution fMRI fails to provide such high-frequency information
(see Figs. 11 and 12).

4.3. Curvature-induced distortion

An important factor that influences spatial resolution is the folded
anatomical structure of cortex. We have shown that in sulci, outer
cortical depths are compressed, spatial resolution is relatively low, and
data values appear to expand, whereas in gyri, outer cortical depths are
expanded, spatial resolution is relatively high, and data values appear to
compress (see Fig. 4). Thus, making valid inferences about spatial fea-
tures observed in high-resolution cortical maps is tricky: the intrinsic
resolution of the data varies depending on the local curvature and
observable spatial features might be an artifact of curvature-induced
distortion (see elongated patches in Fig. 4B, second row). To be clear,
we are not so much discussing resolution limitations of the measurement
method (sub-millimeter fMRI) and the raw data that it produces, but
rather resolution limitations that manifest when attempting to measure
and make inferences regarding different depths of the highly folded
cortical surface. The considerations we raise do not necessarily indicate a
problem with high-resolution data, but rather indicate an issue that must
be carefully taken into account when making inferences about fine-scale
cortical topography. We are not the first to realize that there are depth-
dependent sampling and resolution biases where cortical folding occurs
(Chaimow et al., 2018a; Kemper et al., 2018; Polimeni et al., 2010), but
what we provide here is a demonstration of how large these biases are
and how they manifest in surface visualization.

In our visualizations (Fig. 4), color patches are relatively homoge-
neous in size and shape for data from inner cortical depths and become
increasingly distorted as one progresses from inner to outer depths, with
data in sulci appearing to expand and data in gyri appearing to compress.
It is important to note that these observations are partly a result of the
fact that various cortical surfaces created by FreeSurfer (e.g. inflated,
sphere) are matched to the topology of the white surface (which can be
viewed as the most inner depth). In theory, one could attempt to generate
surfaces that match the topology of the pial surface and then visualize
data from different cortical depths on those surfaces. However, this
would simply reverse the direction of the distortion (color patches would
be relatively homogeneous in size and shape for data from outer cortical
depths and would become increasingly distorted as one progresses from
outer to inner depths, with data in sulci appearing to compress and data
in gyri appearing to expand). Alternatively, one could generate multiple
surfaces, using one surface matched to each depth. This approach would
indeed produce visualizations with higher spatial accuracy. However, a
major benefit of using a single surface is that cortical locations positioned
perpendicularly to the cortical surface do not change position on the
visualization, and so one can toggle (or glance) between maps from
different depths and easily assess similarities and differences. This
benefit would be lost under an approach that involved multiple surfaces.
In light of these various considerations, we believe that curvature
distortion is not specific to the analysis and visualization approach we
have adopted (e.g. the use of FreeSurfer surfaces), but is an issue that
complicates any visualization approach for high-resolution data.

It is known that in terms of cytoarchitectonics, outer cortical layers
are thickened at sulci and thinned at gyri (and, conversely, inner cortical
layers are thinned at sulci and thickened at gyri) (Polimeni et al., 2018;
Waehnert et al., 2014). This counteracts, to some degree, the
curvature-induced distortion effect we have described. For example,
although the measurement resolution for outer depths is low in sulci, this
is partially compensated by the fact that the underlying biological
structure of interest (layers) is larger. We also note that the use of square
(Cartesian) grids for cortical surface representation does not circumvent
curvature-induced distortion (since the distortion is a consequence of

intrinsic brain geometry, not the vertex sampling scheme), though such
an approach can yield more regular spatial sampling and facilitate
quantification of surface metrics (Kemper et al., 2018).

4.4. Impact of veins on BOLD responses

A major focus of this paper has been to characterize how veins
manifest in a sub-millimeter fMRI dataset representative of what might
be used in routine neuroscience applications. Although the static sus-
ceptibility effects (darkening of EPI intensities) caused by veins are
straightforward, the dynamic effects caused by veins in the BOLD signal
are more relevant to the neuroscientist and more challenging to char-
acterize and understand. Given that the field has conceptualized the ef-
fect of veins in many different ways, here we systematically lay out six
properties that we believe characterize the impact of veins on spatial
patterns of BOLD activity (temporal effects are beyond the scope of the
present study):

( Neural origin. We have used a task-based paradigm in which BOLD
responses are evoked by experimental conditions, as opposed to a
resting-state paradigm that lacks explicit experimental manipulation.
It is reasonable to assume that the trial-averaged BOLD responses that
we quantify and study are signals that ultimately stem from experi-
mentally driven changes in neural activity. Thus, the issue at stake is
not whether venous-related BOLD responses reflect neural activity in
general, but rather how accurately venous-related BOLD responses
reflect the underlying neural activity.

( Amplification. Consistent with many previous reports both old (Lee
et al., 1995; Menon et al., 1993) and new (He et al., 2018; Yu et al.,
2016), we find that veins tend to be associated with very large BOLD
responses (see Fig. 10A). Since this amplification of signals carried by
veins is larger than the increase in noise (see Fig. 10B), the overall
impact is that signal-to-noise ratio (SNR) is relatively high in and
around veins. It is important to note that amplification produces high
spatial frequency patterns due to the heterogeneity of the vasculature
(see Fig. 11D); it is important to not mistake this for sensitivity to
fine-scale neural activity. Also, the amount of amplification of BOLD
signals may depend on the angle of the vasculature with respect to the
static magnetic field (Gagnon et al., 2015).

( Mislocalization. Since veins drain blood away from capillaries, BOLD
signals associated with veins may be removed from the original site of
neural activity (Olman et al., 2007; Polimeni et al., 2010; Turner,
2002). Although such BOLD signals are ultimately caused by neural
activity, they are displaced and therefore do not accurately reflect
local neural activity.

( Tuning distortion (e.g. blurring). This is a complementary way of
conceptualizing the effects of mislocalization. Suppose that the BOLD
signal in a given voxel reflects a mixture of microvasculature (e.g.
capillaries, venules) and macrovasculature (e.g. pial veins, draining
veins). Tuning—i.e., the relative pattern of responses observed across
experimental conditions—may differ across the two components. For
example, the microvasculature component might exhibit narrow
tuning that is matched to the local neural activity (e.g., strong
response to only one condition), whereas the macrovasculature
component might exhibit broad tuning due to the draining of blood
from a large expanse of brain tissue (e.g., strong responses to many
conditions). That macrovasculature-related signals degrade the
specificity of fMRI has been long recognized (Yacoub and Wald,
2018), and this is consistent with the fact that spin-echo-based
techniques yield narrower tuning compared to gradient-echo (De
Martino et al., 2013; Moerel et al., 2018; Parkes et al., 2005).

( Sign reversal. There is evidence that vein-related BOLD responses can
sometimes be reversed in sign; for example, a decrease in BOLD signal
might be observed even though the driving event was an increase in
neural activity (Bianciardi et al., 2011; Lee et al., 1995; Olman et al.,
2007; Winawer et al., 2010). In this paper, we consider both positive
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and negative BOLD responses by computing the absolute value of
observed responses.

( Signal loss. Static susceptibility effects are often associated with large
BOLD responses but are sometimes associated with a loss of detect-
able BOLD signal (see Fig. 10A). Such signal loss can be caused by the
cerebral sinuses, which are the largest veins that drain blood away
from the brain. In particular, the transverse sinuses have certain
orientations with respect to the static magnetic field and lead to a
severe loss of BOLD signal (Winawer et al., 2010).

Thus, veins have complex consequences on BOLD responses. It is
useful to conceptualize veins as imposing a vascular filter on the un-
derlying neural activity (Ugurbil, 2016). Under this conceptualization,
the vascular filter is likely spatially complex and variable across the
brain, and therefore should not be thought of as a simple compact blur-
ring (e.g. Gaussian) kernel (Kriegeskorte et al., 2010). Moreover, the
vascular filter produces a pernicious type of unwanted effect, one that
does not average out by increasing the amount of data from an individual
subject nor by averaging data across subjects (see Fig. 8).

4.5. Practical implications for fMRI studies

We have investigated a number of methodological issues in this
paper, including spatial resolution and accuracy, cortical curvature and
depth, measurement reliability, and the impact of veins. Many of these
issues affect both standard-resolution and high-resolution fMRI. In this
section, we discuss specific ways in which these technical issues may
affect neuroscience studies that use fMRI and suggest some practical steps
one can take.

4.5.1. Spatial accuracy
Given the extensiveness and strength of venous effects observed in

our measurements (see Figs. 5 and 9), it is reasonable to worry about the
level of spatial accuracy provided by fMRI. Although we do not have a
ground-truth estimate of the fine-scale neural activity patterns that un-
derlie our measurements (see Polimeni et al., 2010 for a nice example of
how retinotopy can be exploited as ground truth), previous studies
indicate that veins may displace activation up to 4mm away from acti-
vated cortex (Turner, 2002) and corrupt the profile of BOLD activity
across cortical depth (Heinzle et al., 2016). Obtaining a better charac-
terization of such mislocalization effects is central to the foundations of
fMRI. We need further research aimed towards fine-scale assessment of
the spatiotemporal coupling between neural and hemodynamic activity
in realistic experimental settings (He et al., 2018; O'Herron et al., 2016).

Like many methodological issues, whether spatial accuracy matters
depends on the goals of the specific paradigm under consideration. Many
fMRI experiments do in fact require and pre-suppose a high level of
spatial accuracy. Indeed, the prospects of using sub-millimeter fMRI to
resolve responses of cortical layers is a mapping endeavor that requires
high accuracy, and the strong co-variation of venous effects with cortical
depth (see Figs. 9 and 11) is a reason for concern. Often, the main finding
of a fMRI study lies in the fact that a certain effect is localized to one brain
region and not another. For such studies we must consider the possibility
that veins cause mislocalization and lead to erroneous scientific conclu-
sions. This is not an idle theoretical concern: a recent study shows that
BOLD signals measured from the amygdala actually reflect distant neural
sources (Boubela et al., 2015). More generally, any fMRI study in which a
response property is mapped across the brain is susceptible to problems
with spatial accuracy. When unexpected features are observed in a map,
such as a disruption or discontinuities in what is expected to be smooth
topography (for example, see Fig. 10 in Winawer et al., 2010 and Fig. 2b
in Press et al., 2001), one should consider venous effects as a potential
cause of such features. Importantly, problems with spatial accuracy can
extend to the group level. For example, many researchers are interested
in the consistency of the locations of brain regions across subjects (Frost
and Goebel, 2012; Weiner et al., 2017; Zhen et al., 2015). Veins may

cause artifactual variability in the locations of brain regions, and may
even bias localization results at the group level given that venous effects
are not random across subjects (see Fig. 8). Finally, spatial inaccuracies in
fMRI limit the effectiveness of studies that combine fMRI with other tools
at the neuroscientist's disposal, such as diffusion-weighted imaging (e.g.
Gomez et al., 2015) and electrocorticography (e.g. Winawer and Parvizi,
2016).

But there are also circumstances where spatial accuracy is less critical.
In standard-resolution fMRI studies, the scientific claims presumably
address spatial effects that are no finer than the voxel size (e.g. 3mm),
and so mislocalization caused by vasculature becomes less of a concern.
This is especially true if the data are spatially smoothed or averaged
across regions-of-interest. Some fMRI studies involve multivariate anal-
ysis methods, such as pattern classification (Norman et al., 2006) and
representational similarity analysis (Kriegeskorte et al., 2008a), that
quantify activity in a way that is insensitive to the precise spatial patterns
that underlie that activity. Such methods are less susceptible to
venous-related mislocalization (but come with caveats of their own
regarding spatial localization—see Etzel et al., 2013). Finally, there are
ways of approaching fMRI data—perhaps reflecting an engineering per-
spective—that are perfectly content with analyzing signals containing
reliable information about neural activity even if there is some uncer-
tainty regarding the spatial origin of those signals. Examples include
studies that use encoding-model approaches (e.g. Eickenberg et al.,
2016) and studies that use fMRI to perform stimulus reconstruction (e.g.
Santoro et al., 2017). In these types of studies, the venous-related com-
ponents of the BOLD response are a desirable feature of the data given
their high signal-to-noise ratio.

4.5.2. Selectivity and tuning
Besides accurately localizing functional activity, neuroscience studies

are often interested in the relative magnitudes of responses observed at a
given brain location across experimental conditions. Such selectivity, or
tuning, might be distorted by the presence of veins and lead to incorrect
neuroscientific conclusions. For example, suppose we are interested in
quantifying population receptive field size of individual voxels in visual
cortex (e.g. Kay et al., 2013b). If the voxel response is influenced by a
vein that reflects activity from a large expanse of cortex, the voxel might
appear to have large population receptive field size (activity increases for
many different positions in the visual field), even though the neural
population within the voxel has small population receptive field size
(activity increases for only a few visual field positions). As another
example, suppose we use representational similarity analysis to quantify
the similarity of the representation observed in a given brain region
across stimulus categories (e.g. Kriegeskorte et al., 2008b). Veins present
in the brain region might mix activity from distinct neural populations in
such a way that the stimulus categories yield representations that appear
more similar than they are at the neural level (see Fig. 11D). Explicitly
accounting for the measurement process (and artifacts therein) may be a
useful approach for improving inferences from these types of analyses
(Carlin and Kriegeskorte, 2017).

Researchers have worried about venous-related degradations in
specificity (i.e. broadening of tuning) since the early days of fMRI
(Menon et al., 1993). The effect of veins is often cast in terms of a
point-spread function (PSF) (Chaimow et al., 2018b; Engel et al., 1997;
Shmuel et al., 2007; Yacoub et al., 2008), in the sense that veins induce
blurring and therefore result in a large PSF. As discussed earlier, the ef-
fects of veins appear to be more complex than simple blurring and may
involve mislocalization and/or sign reversal. Furthermore, quantification
of the PSF is not a straightforward endeavor. For example, we have
shown that BOLD activity patterns in units of percent signal change have
reliable fine-scale detail (see Fig. 11D), a substantial portion of which is
likely driven by venous amplification (see Fig. 12). Thus, BOLD activity
patterns measured using fMRI are not intrinsically blurry, and do not
appear to be a simple blurring of neural activity patterns.
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4.5.3. Selection bias
Veins are associated with amplification of BOLD response amplitudes

and yield high percent signal change (PSC) values (see Fig. 10). Thus, any
analysis that selects voxels based on high PSC (or related metrics such as t
units or variance explained) or quantifies response properties using
metrics that are sensitive to signal strength (such as t units or percent
correct) will be biased towards venous locations. This bias is pervasive,
affects both high- and standard-resolution fMRI, and can manifest in a
variety of ways: activated regions will appear to be larger at outer cortical
depths and smaller at inner depths (due to the prevalence of venous ef-
fects at outer depths); percent correct in an MVPA-style analysis will tend
to be higher at outer cortical depths; the apparent shape of activated
regions will to some degree follow the spatial structure of the vascula-
ture; procedures that choose only the most reliable voxels (i.e. filter out
noisy voxels) will tend to incur a selection bias towards venous voxels;
regions of interest may appear unbalanced across hemispheres (Vu and
Gallant, 2015); and so on.

4.5.4. Practical steps one can take
We have highlighted potential problems related to spatial accuracy,

tuning, and selection bias that affect fMRI studies, especially high-
resolution studies. We believe that the magnitude of these effects can
be large and may affect the scientific conclusions drawn in a given study.
For example, the spatial anisotropy in visualization caused by cortical
curvature can be as extreme as 3:1 (see Fig. 4B, upper panels), and this
might lead to incorrect inferences of biological structure. As another
example, the influence of vasculature on spatial patterns of BOLD activity
is striking (see Fig. 10D, second and fourth columns), suggesting that one
should exercise caution when localizing brain regions based on hemo-
dynamic activity. Our intention is not to be pessimistic in outlook; in this
section, we suggest some simple practical steps that can be taken to help
mitigate potential problems:

( Data inspections. To ensure that basic fMRI issues are not the source of
problems, it is important to visually inspect image quality and the
results of fMRI pre-processing steps such as spatial and temporal
interpolation, co-registration, and surface reconstruction (see Sup-
plementary Movies 1, 2, 6).

( Line profiles. Although surface visualizations convey much informa-
tion, they are not conducive to assessing reliability or understanding
the relationship among multiple quantities. For such goals, we sug-
gest the use of line profiles as a complementary visualization (see
Fig. 11).

( Unitless data metrics. One strategy to alleviate vein-related amplifi-
cation bias is to use data metrics that are independent of gain. For
example, BOLD response amplitudes observed at a given voxel could
be normalized by dividing by their L2 length (square root of the sum
of the squared responses) or L1 length (sum of the absolute values of
the responses) or by the maximum value observed. These normali-
zations eliminate the gain in the responses and may help clarify
structure in the data (see Fig. 11E). Another example is to express
differences in BOLD responses across conditions using unitless met-
rics such as ratios (e.g. (A–B)/B where A and B indicate responses to
two different conditions). It is important to keep in mind that
although these various procedures remove amplification bias and
compensate for variations in baseline blood volume (Kashyap et al.,
2018), they are susceptible to noise amplification and do nothing to
correct mislocalization and tuning distortion. For example, if the
BOLD response in a given voxel is corrupted by a vein that reflects
neural activity originating in distant brain regions, simply changing
the gain of that voxel does not remove the long-range effects and
recover local tuning.

( Time-averaged EPI intensity. We have shown that EPI intensity aver-
aged across volumes is a useful index of venous effects (see Fig. 7).
This measure does not require any additional acquisition (such as an
SWI scan), is naturally co-localized with BOLD responses, and is

useful even at standard resolutions (see Fig. 11). Visualizing time-
averaged EPI intensity can help reveal to what extent venous effects
are near effects of interest. Researchers have successfully used mean
EPI intensity (e.g. Goncalves et al., 2015; Jorge et al., 2018; Winawer
et al., 2010) and related metrics such as mean divided by time-series
fluctuations (e.g. Fracasso et al., 2018; Olman et al., 2007) to identify
veins. Of course, one must keep in mind that EPI intensity can also be
affected by factors besides venous effects, such as iron and myelin
content and signal dephasing due to large-scale magnetic field in-
homogeneities (see locations 1–3 in Fig. 5).

( Surface voxels. The surface-voxels technique we demonstrate (see
Fig. 4) is useful for assessing physical units on cortical surfaces and for
understanding how cortical folding patterns lead to distortion and
degrade spatial resolution.

( Cortical curvature. Surface visualizations typically include cortical
curvature as a background underlay. Our results highlight specific
properties that are tied to curvature: distortions in spatial structure
(see Fig. 4), variations in spatial resolution (see Fig. 2C), and bias for
veins to be located in gyri (see Fig. 6B). When inspecting surface vi-
sualizations, it is important to consider whether an effect of interest
might be an artifactual consequence of these properties.

4.6. How can we fix the vein problem?

One of the main goals of this paper was to carefully characterize the
impact of veins on fMRI data. As we have emphasized, whether venous
effects are a blessing or a curse depends on the specific goals of the
neuroscience study under consideration. However, to the extent that
many studies require accurate spatial localization and tuning character-
ization, it would be beneficial to have strategies for reducing or elimi-
nating venous effects from fMRI data.

Potential approaches can be roughly divided into those focused on
acquisition and those focused on analysis. An obvious candidate for
acquisition is to use spin-echo instead of gradient-echo pulse sequences.
Spin-echo and related techniques such as GRASE enjoy a reduction of
extravascular effects around large veins (De Martino et al., 2013; Kemper
et al., 2015; Olman et al., 2012; Ugurbil, 2016; Yacoub et al., 2008).
However, this is not a complete solution since refocusing occurs only at
the center of the k-space readout, and unless echo train lengths are short,
T2* effects leak into BOLD activations (Goense and Logothetis, 2006). In
addition, unless the echo time used in spin-echo is sufficiently long,
intravascular effects in large veins can still persist (Duong et al., 2003),
even at 9.4 T (Budde et al., 2014). Spin-echo also incurs increased energy
deposition, subsequent limitations on slice coverage, and, perhaps most
troubling to the neuroscientist, reductions in signal-to-noise ratio. Other
possible acquisition strategies include techniques based on cerebral
blood volume such as VASO (Hua et al., 2013) and multi-echo pulse se-
quences (Kundu et al., 2017). In particular, VASO has recently shown
promise as an effective method for avoiding venous effects and resolving
hemodynamic responses from different cortical depths (Huber et al.,
2017). When considering non-standard pulse sequences, the neurosci-
entist will need to carefully assess whether a candidate sequence delivers
sufficient levels of spatial coverage, spatial resolution, temporal resolu-
tion, and sensitivity.

Instead of changing acquisition, one might attempt to use analysis
strategies to compensate for venous effects in standard gradient-echo
fMRI. Masking out voxels near veins (Koopmans et al., 2010; Moerel
et al., 2018; Shmuel et al., 2007) can be helpful, but small veins occu-
pying a fraction of the voxel volume will not be detected by this
approach. Moreover, the general utility of this approach is limited
because it discards brain locations where functional measurements might
be desired. Another approach is to sample BOLD activity only at inner
cortical depths away from major pial veins (Goncalves et al., 2015; Nasr
et al., 2016; Polimeni et al., 2010). This has similar limitations: one of the
major motivations of sub-millimeter fMRI is to measure and compare
signals from different depths, and so discarding depths is a non-starter for
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many studies. Differential approaches in which differences in responses
between two experimental conditions are targeted, either at the level of
experimental design or in data analysis, can reduce the non-specificity
associated with veins (Olman et al., 2007; Polimeni et al., 2010;
Yacoub et al., 2008), but this is not a complete solution since large vessels
can still exhibit bias with respect to experimental conditions that have
relatively balanced fine-scale neural representations (Shmuel et al.,
2010; Gardner, 2010). Finally, an ‘inversion’ approach has been pro-
posed in which a model is first constructed to characterize the mixing of
signals from different cortical layers due to blood drainage towards the
pial surface and then used to invert observed BOLD response profiles
(Heinzle et al., 2016; Markuerkiaga et al., 2016; Marquardt et al., 2018).
Although this is an interesting approach, the results are contingent on the
accuracy of the model parameters (which may vary across brain regions
and/or subjects). Moreover, it remains to be seen how well such an
approach can handle the complex heterogeneity of the vasculature across
the cortical surface (for review, seeMartin, 2014 and Uluda!g and Blinder,
2018; also, see Fig. 5).

In summary, we believe that venous effects are a major current lim-
itation of sub-millimeter fMRI, and we have attempted to provide a
thorough assessment of how veins manifest in a practical sub-millimeter
fMRI protocol. Ourmessage is not intended to be pessimistic—ultra-high-
field fMRI provides the extraordinary ability to noninvasively measure
activity in the living human brain at a fine spatial scale, and fMRI delivers
many advantages over other methods of measurement (Ugurbil, 2016).
Over the years, we have witnessed continual improvements in fMRI
methodology. Thus, we expect that future research will develop better
and more comprehensive strategies for removing venous effects. How-
ever, we recognize the possibility that there may be no ‘magic bullet’
solution that is optimal for all neuroscientific applications; instead, it
may be necessary to carefully tailor acquisition and analysis strategies for
each individual study.
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Supplementary Material 
 

 
 
Supplementary Movie 1. Inspection of pre-processing results. Movie available online 
(https://osf.io/s5kw7/). Each row corresponds to a distinct subject (S1–S5), and each column corresponds 
to a distinct slice of the GE-EPI acquisition (every 10th slice is shown, yielding a slice-to-slice distance of 
0.8 mm ×	10 slices = 8 mm). The movie cycles between the mean EPI volume, the T2-weighted 
anatomical volume, and the T1-weighted anatomical volume. For each volume, contours depicting the 
white-matter and pial surfaces are toggled on and off (green and cyan indicate left and right hemispheres, 
respectively). The results demonstrate that EPI undistortion, co-registration between functional and 
anatomical volumes, and cortical surface reconstruction all performed well. 
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Supplementary Movies 2–4. Functional volumes after pre-processing. Movies available online 
(https://osf.io/s26yz/, https://osf.io/jbpv5/, https://osf.io/axfvt/). Row and column format same as 
Supplementary Movie 1. These movies show a sequence of 50 EPI volumes chosen randomly from all 
volumes acquired within a given scan session (which lasted ~80 min). The volumes are raw volumes 
aside from the temporal resampling and spatial resampling operations that comprised pre-processing 
(see Methods). Visualizing randomly chosen volumes (as opposed to volumes in chronological order) is a 
stringent test of data quality, as it accentuates instabilities over time. Three movies are provided: 
Supplementary Movie 2 shows results using the pre-processing described in the Methods, involving 
time-varying fieldmap estimates (multiple-fieldmap approach); Supplementary Movie 3 shows results 
using identical pre-processing procedures except that the first fieldmap acquired in each scan session is 
used as a static fieldmap estimate that is applied to each EPI volume before subsequent motion 
estimation and other processing steps (single-fieldmap approach); and Supplementary Movie 4 shows 
results using identical pre-processing procedures except that no fieldmap-based undistortion is applied 
(no-fieldmap approach). Inspection of Supplementary Movie 2 reveals the existence of some low spatial 
frequency artifacts. However, overall stability over time is high in most parts of the brain, indicating that 
data acquisition was stable and that motion correction and fieldmap-based EPI undistortion performed 
well. Inspection of Supplementary Movies 3 and 4 indicates that temporal stability is relatively high for 
the multiple-fieldmap and no-fieldmap approaches but is somewhat low for the single-fieldmap approach. 
We speculate that this temporal instability is the result of inaccurate undistortion of EPI volumes acquired 
distant in time from the single fieldmap and that the use of multiple fieldmaps helps mitigate this issue. 
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Supplementary Movie 5. Static susceptibility effects as a function of cortical depth. Movie available 
online (https://osf.io/2b469/). This movie shows bias-corrected EPI intensities (posterior view, spherical 
surface), progressing from inner to outer cortical depths (Depth 6 through Depth 1). Rows indicate left 
and right hemispheres; columns indicate distinct subjects (S1–S5); and the colormap for each image 
ranges from 0–2, as in Figure 5 and Figure 9B. The large influence of cortical depth on static 
susceptibility effects is visible in this movie. 
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Supplementary Movie 6. Impact of registration on EPI intensities. A, Full movie showing registration 
parameters and EPI intensities. Movie available online (https://osf.io/snb2h/). This movie shows changes 
in registration quality and surface-mapped EPI intensities as the registration between the EPI and T2 
volumes progresses for an example subject (Subject S3). At the top left is a slice through the T2 volume 
that corresponds to a specific EPI slice. At the bottom left are the registration parameters. At the right are 
surface visualizations of the outermost depth (Depth 1, top row) and the innermost depth (Depth 6, 
bottom row) (posterior view, spherical surface). The surface visualizations show raw intensities sampled 
from the EPI volume (cubic interpolation). At each iteration, registration parameters are updated, followed 
by updates to the T2 slice (with a rapid alternation against the EPI slice to assess the match) and updates 
to the surface visualizations. We see that initially, the co-registration between EPI and T2 is poor and 
there are large swaths of darkness in the surface visualizations. Over time, the co-registration improves 
and the swaths of darkness are reduced. Overall, this movie provides intuition for how imperfections in 
registration may lead to apparent dark intensities, and suggests that the final registration solution and its 
corresponding patterns of EPI intensities are robust and accurate. B, Movie showing only surface 
visualizations. Movie available online (https://osf.io/f28mc/). This movie progresses much more rapidly 
than the movie from panel A. We see that over the course of the optimization, large changes occur rapidly 
in the first several iterations and then small refinements take place until the search settles to a local 
minimum. 
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Supplementary Figure 1. Impact of manual segmentation edits. Here we plot maps of raw EPI 
intensities (posterior view, spherical surface, left hemisphere, Subject S1, Depth 1) generated using either 
the original FreeSurfer surfaces with no manual editing (left) or FreeSurfer surfaces after manual edits to 
the tissue segmentation (right). Green arrows highlight a few regions that undergo noticeable changes. 
The similarity of the two depicted maps suggests that surface errors play a limited role in shaping the EPI 
intensity patterns that we observe in our data. 
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Supplementary Figure 2. Quantification of impact of EPI distortion on spatial resolution. A, 
Histogram of effective voxel sizes across all surface vertices and depths. Different shaded lines indicate 
different subjects, and red lines indicate percentiles calculated on results aggregated across all subjects. 
The results show that, for our acquisition protocol, the loss and gain in spatial resolution due to EPI 
distortion is, on the whole, modest: 90% of all effective voxel sizes lie within 0.69 mm to 1.12 mm. B, 
Surface visualization of effective voxel size (posterior view, spherical surface, Subject S1). Depicted is 
effective voxel size averaged across cortical depth. A log-based colormap is used, and we mask out 
values differing by less than 10% from the nominal acquisition resolution of 0.8 mm (see dotted lines). As 
expected, there are large distortions near the ear canals. Also, there appears to be some tendency for 
distortions to be located in and around gyri, perhaps due to proximity to the cerebral sinuses. 
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Supplementary Figure 3. Assessment of surface accuracy. It is possible that dark EPI intensities 
might be the result of inaccurate cortical surface reconstructions (e.g. surfaces might extend outside of 
the brain) as opposed to reflecting venous susceptibility effects. Though this is an issue that is difficult to 
definitively resolve, we perform here, for an example subject (Subject S1), a visualization to provide 
evidence that surface errors are likely a minor effect. The idea behind the visualization is to confirm that 
cortical surface vertices are located in positions that correspond to gray matter. A, T1-based gray-matter 
mask. First, we took the brainmask.mgz version of the T1 volume from FreeSurfer and upsampled the 
volume to isotropic 0.4-mm voxels (cubic interpolation) to reduce discretization effects. Then, we applied 
a simple threshold to the T1 intensity values in order to select voxels that likely correspond to gray matter 
locations (values within the range 50–100). Shown is an example coronal slice through the T1 (left), 
voxels in the mask (right), and an overlay of the two (middle). The mask does not perfectly isolate gray 
matter but is sufficient for the present purposes. B, Visualization of consistency between the mask and 
cortical surfaces. We sampled the mask using nearest-neighbor interpolation onto the Depth 1 (left) and 
Depth 6 (right) surfaces, and generated surface visualizations (posterior view, spherical surface, left 
hemisphere). Importantly, we applied various amounts of shifts to the mask before the sampling. In each 
set of images, the central image shows the result of no shifting, whereas the other set of 3 orthogonal 
dimensions x 2 directions x 2 shifts = 12 images shows results produced after shifting. The two shifts 
along each direction correspond to 1-voxel (0.4 mm) and 2-voxel (0.8 mm) shifts. Notice that the central 
image in each set of images is predominantly red, whereas small shifts of the mask lead to encroachment 
of black into the maps. These results provide some evidence that the cortical surfaces are positioned 
accurately with respect to gray matter. The dark spots in the central map of the Depth 6 results are due to 
unusually bright T1 intensities found in the most posterior regions of cortex (see panel C). C, Visualization 
of consistency between the original T1 values and cortical surfaces. Here we repeat the analysis of panel 
B but use the original T1 values (no thresholding) and sample these values using cubic interpolation onto 
the Depth 1 and Depth 6 surfaces. A fixed colormap is used for all maps (same colormap of panel A). 
Compared to the binarized intensities in panel B, the visualizations in panel C are harder to interpret but 
are generally consistent. 
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Supplementary Figure 4. The effect of mask dilation on group-wise consistency of static 
susceptibility effects. Same format as panels B and D from Figure 8 (except sulci lines and visual area 
labels are omitted for simplicity). Each row shows results obtained using different degrees of dilation: 
vertices in the vein masks expand to a circle with diameter D where D ranges from 0 (no dilation) to 5 
mm. The main effect of increased dilation is lower values in the averaged vein mask; this is reflected in 
the general leftward shifts of the histograms. Independent of the specific amount of mask dilation, we see 
that the intersubject consistency of static susceptibility effects is greater than that observed under the null 
distributions. 
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Supplementary Figure 5. Summary of GLM metrics as a function of cortical depth. Each GLM 
metric is aggregated across subjects and then plotted as a histogram. The rightmost bin includes all 
values greater than the maximum displayed value. The results indicate that outer depths are associated 
with large beta weights (panel A), large beta errors (panel B), large normalized betas (panel C), and large 
amounts of variance explained (panel D). 
	


