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Abstract: 

Prior empirical and theoretical studies in 
neurophysiology have suggested that noise correlations 
between neurons could have a great impact on the 
fidelity of population codes in macaque visual cortex. 
However, it remains unclear whether such insights 
generalize to the large-scale brain activity in human 
sensory cortex. Here, we use functional magnetic 
resonance imaging (fMRI) to examine the effect of noise 
correlations on population coding of orientation in 
human V1. Trialwise responses of each V1 voxel is 
estimated for four orientations. We estimate the Fisher 
information carried by voxel responses for orientation in 
the empirically observed data (i.e., with noise 
correlations) and in a simulated regime in which 
voxelwise noise correlations are absent. Results show 
that the removal of noise correlations dramatically 
reduces information by one order of magnitude. This 
suggests that correlated activity could mediate the 
accuracy of population codes in the human brain, and 
that voxelwise noise correlations in human V1 are mostly 
beneficial, unlike the neuronal noise correlations that are 
often found to be detrimental.  

Keywords: Noise correlations, population codes, 
functional magnetic resonance imaging, neural 
variability 

Noise correlation and population codes 

Neuronal activity varies trial-by-trial even towards a 
repeatedly presented stimulus. In vivo, 
neurophysiologists have discovered that the magnitude 
of noise correlations between two neurons tends to be 
positively correlated with the similarity of their tuning 
functions. Early work suggests that these noise 
correlations limit the information that a neuronal 
population can encode (Zohary et al., 1994). This 
finding leads to the canonical view that noise 

correlations are detrimental to population codes.  Some 
recent studies suggest that whether noise correlations 
are detrimental or beneficial depends on many factors, 
such as tuning homogeneity (Ecker et al., 2011), task 
contexts (Bondy et al., 2018), and behavioral relevance 
(Haefner et al., 2013). Moreover, researchers have 
found that some cognitive processes (e.g., attention) 
improve neural processing by primarily altering noise 
correlation structures (Cohen & Maunsell, 2009). These 
results substantiate the critical role of noise correlations 
in mediating the accuracy of population codes. 

In the field of fMRI, the accuracy of population codes 
is typically assessed by multivariate pattern analysis 
(MVPA). For example, decoding accuracy, such as 
percent correct in a classification task, is typically 
interpreted as conveying the amount of information 
encoded in a voxel population. However, percent 
correct is a summary statistics that does not provide 
detailed information on the different properties that 
underlie decoding performance, such as signal and 
noise at the single voxel level, and the interactions 
between voxels (i.e., covariance). 

The magnitude and structure of voxelwise noise 
correlations in the human brain remains underexplored. 
Some recent studies have demonstrated that the noise 
correlation between two voxels is also correlated with 
their tuning similarity (Ryu & Lee, 2018; van Bergen & 
Jehee, 2018), implying that tuning compatible noise 
correlations exist in macroscopic brain responses. As 
such, noise correlations might considerably impact the 
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amount of information carried in human sensory cortex. 
This hypothesis, however, has yet been thoroughly 
tested in the human brain. 

In this paper, we ask a simple question—whether 
noise correlations are beneficial or detrimental for 
population codes in human sensory cortex. In a simple 
orientation experiment, we compare the accuracy of 
population codes in human V1 between two scenarios: 
one in which noise correlations are intact as observed 
and one in which noise correlations are hypothetically 
removed. Instead of the conventional MVPA approach, 
we use an information-theoretic approach that is based 
on a generative model of voxel responses to directly 
calculate amount of orientation information. This 
approach allows us to hypothetically remove noise 
correlations without changing other aspects of 
multivariate response distributions (i.e., marginal 
distributions). 

Experiment and data acquisition 

Stimuli and experiment 
We analyze the fMRI data collected by Sengupta et al. 
(2017). Six subjects participated in the study. Briefly, 
two flickering sine-wave gratings (Fig.1, 0.8-7.6º 
eccentricity, 160º angular width on each visual hemifield 
with a 20º gap on the vertical meridian) were presented 
on both sides of the fixation point. The orientations of 
the two gratings varied across trials. All orientations 
were drawn from 0º, 45º, 90º, and 135º with equal 
probabilities. A stream of letters was presented at the 
fixation point throughout each scanning run.  Subjects 
were instructed to perform a reading task to maintain 

their fixation. At the end of a run, subjects were tested 
on a question related to the reading text. 

On each trial, an orientation stimulus was shown for 
3 s and followed by a 5 s blank. Each scanning run 
contained 30 trials. The 30 trials also included 10 
randomized blank trials. The 1st trial could not be a 
blank trial, and there were no two consecutive blank 
trials. Blank trials could appear on either side while the 
orientation stimulus on the other side was intact. Each 
subject underwent 10 scanning runs. 

 
MRI acquisition 
A T2*-weighed echo planar imaging 
(TR/TE=2000/22ms) sequence was used to acquire 
fMRI data. In the original experiment, the subjects were 
scanned at four different resolutions. Here we analyze 
only the 2-mm isotropic data because decoding results 
have been shown best at this approximate resolution 
(Sengupta et al. (2017). 121 functional volumes were 
acquired in each run (FoV=200mm, matrix size 100 x 
100, 37 slices, GRAPPA accel. factor 3). The functional 
volumes covered the occipital and parietal lobes.  A 
high-resolution T1-weighted image was also acquired 
for each subject (0.67mm isotropic).  

Additionally, four standard retinotopic scans were 
also conducted and used to define low-level visual 
areas.  

 
Data analyses 

 
fMRI preprocessing 

 

 
Figure 1. Schematic illustration of example trials in the orientation experiment. Two gratings are presented in 
each visual field. Their orientations are independently selected from four orientations (0º, 45º, 90º and 135º). 
In some baseline trials (second trials shown above), only one grating is presented. Subjects are asked to attend 
and understand the letter stream presented at the fixation point.  
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The pial and white surfaces were reconstructed based 
on the high-resolution T1-weighted images using the 
standard FreeSurfer pipeline.  All functional imaging 
data underwent slice-timing correction, motion 
correction, and registration to T1 images. Retinotopic 
data were analyzed using the 3dRetinophase tool in 
AFNI. Polar angle and eccentricity maps were projected 
onto surfaces to aid delineation of early visual areas. 
 
ROI definition and voxel selection 
Bilateral V1 was defined on spherical cortical surfaces 
based on polar angle and eccentricity maps. V1 vertices 
on surfaces were then transformed back to EPI space 
to locate corresponding voxels using the AFNI 
3dSurf2Vol utility.  

Two general linear models (GLM) were implemented 
separately for the left and right hemifields. We modeled 
the effect of each hemifield in the contralateral V1. We 
coded each trial with a separate predictor in order to 
estimate trial-by-trial responses (i.e., beta weights) for 
each voxel.  The demeaned head motion parameters, 
and constant, linear, and quadratic polynomial terms 
were also included as nuisance predictors. Time series 
of 10 scanning runs were concatenated and fitted using 
a single GLM. We selected the 100 voxels with the 
highest r-square values in the GLM in each hemisphere 
for further analysis. Therefore, we obtained a 100 
(number of voxels) x trials data matrix for each 
orientation in each hemisphere.  

Calculation of Fisher information in voxel 
populations 

For each orientation in each hemisphere, we calculated 
the covariance matrix Q based on the voxel by trial data 
matrix. 

For a pair of orientations, e.g., 0º and 45º, we define the 
Fisher information to discriminate them as: 

 ,   (1) 

where f is the mean population responses across trials, 
and Q is the covariance between voxels at each 
orientation. This format of Fisher information has been 
shown appropriate if the response distribution 
conditioned on a stimulus follows the exponential family 
and linear sufficient statistics (Averbeck & Lee, 2003). 
The Fisher information of each orientation is calculated 
as the average across the Fisher information between 
that orientation and the other three orientations. For 
example, the Fisher information of 0º (I0 ) is: 

,                      (2) 

Fisher information is typically used to assess the 
encoding of continuous variables. Here we generalize it 
to the problem of classifying discrete variables 
(Moreno-Bote et al., 2014). This is also dubbed as 
“linear discriminability” in some literature (Lin et al., 
2015). This metric allows us to further calculate the 
Fisher information in the population responses without 
noise correlations. To do so, we artificially created the 
covariance matrix Q’ that shares the same diagonal 
items with Q but all off-diagonal items (i.e., voxelwise 
noise covariance) in Q’ are set to 0. We then used the 
Q’ to calculate the Fisher information using Eq.1. By 
this method, all noise correlations between voxels can 
be removed without altering the signal and noise levels 
of individual voxels at all. This is similar to the method 
in which the voxel responses are shuffled across trials 

I0,45 = ( f0 − f45)*(
Q0 +Q45

2
)−1 *( f0 − f45)

I0 =
I0,45 + I0,90 + I0,135

3

 
Figure 2. Information of orientations in left (left panel) and right (right panel) hemispheres. Error bars are standard 
errors across subjects (n=6). 
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such that the noise correlations between voxels are 
disrupted. 

Results 

We find that the amount of information is greater to one 
order of magnitude when noise correlations are present 
(i.e., realistic voxel responses) compared with the case 
that noise correlations are hypothetically removed (Fig. 
2). This result is robust across all four orientations and 
two hemispheres. This presents specific evidence that 
noise correlation can be beneficial to the population 
coding of orientation in human sensory cortex.  

Discussion 

Here we show that trial-by-trial voxelwise noise 
correlations are beneficial for population coding of 
orientation in human V1. This challenges the long-
standing view in neurophysiology that noise 
correlations are detrimental. This result invites a 
rethinking of the role of noise correlations in sensory 
processing. It also suggests that the computational 
principles underlying microscopic neuronal activity and 
macroscopic voxel activity might be distinct. However, 
the source of trial-by-trial voxel response variability still 
remains unclear. It partially comes from neuronal noise 
but should also include other non-neuron noise, such 
as fMRI measurement noise. Understanding the nature 
of voxel response noise and noise correlations could be 
an important future direction.  
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