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Abstract. The current deep neural networks (DNNs) in mimicking
human perception remain challenges for solving visual reasoning tasks.
Human perception does not merely involve a passive observer label-
ing sensory signals, but also contains an active inference about object
attributes and their relationships towards an intended output (e.g., an
action). In this work, we propose a variational autoencoder (VAE) model
to discriminate the ranking relationships between object attribute val-
ues by semi-supervised contrastive learning, dubbed as SSCL-VAE. This
perception-based model solves the visual reasoning task of Raven’s Pro-
gressive Matrices (RPM) in three benchmarks (RAVEN, I-RAVEN and
RAVEN-Fair), with high accuracy close to humans, as well as many end-
to-end supervised models. The current work thus suggests that construc-
tions of general cognitive abilities like human perception may empower
the perceptron with DNN to solve high-level cognitive tasks such as
abstract visual reasoning in a human-like manner.

Keywords: Perception · Inference · Contrastive learning ·
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1 Introduction

Deep neural networks (DNNs) by end-to-end supervised learning have achieved
great success in visual categorizing, but are not versatile for visual reasoning
[1–3]. The critical feature in abstract visual reasoning tasks, such as Raven’s
Progressive Matrices (RPMs) [4], is that the rules governing a sequence of enti-
ties are semantically defined by their spatiotemporal relations [5]. Learning these
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semantic relationships by supervisions is not straightforward. Even a number of
end-to-end supervised DNN models have been developed to achieve high perfor-
mance in solving RPMs [1–3,6–8], these models lack interpretability and gener-
alizability. Thus far, it remains challenging for DNNs to behave like humans in
solving such visual reasoning tasks [9,10].

150 years ago, Dr. von Helmholtz addressed that the properties of the
external world are not directly provided by sensory inputs, but are probably
inferred through human hierarchic neural processes [11]. Perception is based on
higher-order features and their relationships, rather than locally defined features,
related to the stimulus. Indeed, these attributes are mixed together and must be
disentangled to make explicit percepts [12,13].

Differing from the current DNN methods that need to learn from scratch
the associations between the contexts and the supervised labels with a huge
number of samples, humans do not rely on such domain-specific knowledge or
experiences in RPMs, but their prior general cognitive abilities in recognition of
object attributes and their relationships. Although humans at a very early stage
of life have no such a concept of semantics and symbols, they can recognize vari-
eties of objects [14], and comprehend simple rules governing the world and apply
these rules to new contexts [15]. Importantly, the object attribute representa-
tions in the human brain are unique and invariant in different contexts [16,17],
and the context-dependent relationships between attributes among the objects
are implicitly inferred [11]. For instance, we recognize the same color of ‘green’
from different objects and further recognize that the ‘green’ color looks lighter
than the ‘red’ color, but darker than the ‘cyan’ color.

Inspired by these insights from human perception, we move a step further
towards visual reasoning ability of artificial intelligence (AI) on the basis of the
general cognitive abilities in object perception as humans do. In this work, we
propose a variational autoencoder (VAE) model for visual perception by semi-
supervised contrastive learning (SSCL), dubbed as SSCL-VAE. The motivation
of the SSCL method is to make embeddings of the same attribute from different
objects are close to each other while embeddings of different attributes are sep-
arated away from each other [18]. Rule logic execution in this model follows the
approach of probabilistic abduction and execution (PrAE) model [19], in which
the inference engine aggregates distributed representations of a set of object
attributes in the context panels to infer a posterior probabilistic representation
of the target panel. Notably, the PrAE model is originally trained by supervisions
of both the correct and incorrect answers, and also the ground truths of rules
(metadata) contained in each RPM problem as auxiliary annotations. In this
work, without these ample supervisions, SSCL-VAE merely enforces human-like
perceptual abilities, in particular, the ability of qualitative comparisons between
object attribute values from the different objects in the context sets, but not
the answer sets. The proposed model obtains accuracies as high as humans,
and many of the previous supervised models in solving RPMs in three bench-
marks. Importantly, we demonstrate that constructions of human-like perception
abilities on DNNs can empower AI such a capability of solving abstract visual
reasoning in a human-like manner. To the best of our knowledge, this has not
yet been explored in the domain of visual reasoning tasks.
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2 Related Work

2.1 Object Representations

Recognition of object attributes is critical to solve visual reasoning tasks, as the
latent relations, namely rules, that govern the context of instance are defined
by these visual features. DNNs are believed to versatilely fit any desired func-
tion with a constraint of the loss function. However, the embeddings of latent
attributes are too flexible to comply well with the semantics of object attributes
that are used in these tasks, such as types, sizes, and colors in the RAVEN
dataset [1–3,6–8]. Instead, the object attributes are often blended in the latent
embeddings. Recently, variational autoencoder (VAE) [20–22] and neural-vector
[23] models have been proposed to build stable representations and to disentan-
gle the blended representations of object attributes. A straightforward approach
to parcel objects into desired attribute representations is to use the metadata
of object attributes as auxiliary annotations to train the perception module.
However, the prior annotations are needed to label by humans. In image recog-
nitions, SSCL has been used to discover better representations by comparing
the relationship representations from the same or different attributes [18,24].
We here leverage this method in cooperation with a VAE model to shape the
latent embeddings, in order to enable the model to have simple relational infer-
ence capabilities. This proposed model thus constrains the representations of the
same attribute to be invariant across different objects, importantly complying
with the rankings of attribute values too.

2.2 Visual Reasoning

Most of supervised models designed to solve visual reasoning tasks mainly focus
on the visual reasoning process [1–3,6–8], as the baselines of DNNs fails to solve
these high-level cognitive tasks. A common motivation for visual reasoning mod-
els is to learn relational representations of latent rules by maximizing similarity
between analogical relations and minimizing similarity between non-analogical
relations [2,3,25–29]. This is achieved by comparing the relational representa-
tions with correct and incorrect answers. In striking contrast, the proposed model
here embeds the relational representations in the perception module.

2.3 Neuro-symbolic Models

Unlike the monolithic DNN models, the neuro-symbolic models are composed
of a perception module at the frontend and an inference module at the backend
[3,30–32]. Nonetheless, it remains challenging to train the neuro-symbolic models
with the end-to-end supervised training form. Thereby, auxiliary annotations of
the latent rules are additionally used to constrain the rule representations in the
PrAE model [19]. Although the currently proposed model partially shares the
inference engine with the PrAE model, we here use SSCL to train the visual
perception module alone. Semi-supervised learning (SSL) has been also used to
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solve visual reasoning tasks, such as RPMs [6,33]. However, the conventional
SSL combines a large number size of labeled data and a small number size of
unlabeled data. In contrast, SSCL used here has no concrete labels, but the pair-
wise rankings that are partially supervised. For this reason, the current method
is also called semi-supervised.

3 Methods

In the RAVEN dataset [35,36], each problem consists of 9 panels in a form of
3× 3 matrix with 8 context panels and a missing panel at the last panel. The
goal of the task is to find out one from 8 candidate panels that completes the
matrix with satisfactions of the row-wise latent rules governing the organization
of object attributes Fig. 1. Besides, there are 7 configurations [Center, Left-Right
(L-R), Upper-Down (U-D), 2× 2 Grid, 3× 3 Grid, Out-In Center (O-IC), Out-In
Grid (O-IG)] in the RAVEN dataset. In different configurations, objects in panels
are organized differently. We train an independent model for each configuration.

Overall, the task requires two independent cognitive abilities of object per-
ception and rule inference. If perception on object attributes is perfect, then
the process of identifying the latent rules becomes plain, an exhaustive search
within the rule space in a finite set [36]. Differing from the visual perception
tasks, the object attributes are also latent in visual reasoning tasks, but are con-
ventionally required to infer from the spatiotemporal relations from the context

Fig. 1. Description of SSCL-VAE model. (A) The representative examples of semi-
supervised contrastive learning in the equality and ranking methods, respectively. (B)
A schematic of the model architecture. Please see the main text for details.
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in each instance. In other words, both the object attributes and rules remain to
be identified. This is hard to implement in DNNs, and also remains challenging
for the neuro-symbolic models. The novelty of SSCL-VAE here mainly focuses
on the learning approach, rather than the DNN architecture (Fig. 1).

3.1 Object-Based Variational Autoencoder

We use VAE as the backbone of the visual perception module. VAE consists of
an encoder that maps the visual inputs to latent representations and a decoder
that is required to reconstruct the input images reversely from the latent repre-
sentations. We first take each object in each panel as the input and pretrain the
VAE with the loss as follows,

LossVAE =
∑

x

(
||x − x̂||2 +DKL

(
N (µx,σ

2
x)||N (0, 1)

))
(1)

with DKL

(
p||q

)
=

∑

i

pi
(
log

(
pi) − log

(
qi)

)
, (2)

where x is the input (original) image, x̂ is the reconstructed image, ||·|| means L2
norm, DKL means Kullback-Leibler divergence, and N (µ,σ2) means Gaussian
distribution with the mean µ and standard deviation σ.

The requirement of reconstruction ensures plenty of information in the latent
embeddings of objects and also helps to stabilize the representations in later
training. In the configuration such as 2× 2 Grid, there may exist multiple objects
in a panel. We then try to capture all the objects by selecting regions of interest,
though the existence of objects in regions is not guaranteed.

3.2 Attribute Discrimination

Differing from the conventional VAE for image reconstruction, the visual per-
ception module is additionally required to discriminate the object attributes,
such as type, size and color in RPMs. To do so, we add an additional multi-layer
perceptron (MLP) for each attribute to transform the latent embeddings in VAE
into the distributed probabilities belonging to the separate attribute values, in
which the dimension of type, size and color attribute is 5, 6 and 10, respectively.
To train the MLP and finetune the encoder of VAE, we use the information
of metadata of object attributes as auxiliary annotations. However, instead of
the exact labels, we train the model to acquire two common-sense knowledge on
these visual attributes. First, the model is trained to know whether the values
of the same attribute from any pair of objects are equivalent or not. In other
words, the representations of visual attributes in the model are unique and invari-
ant across different objects. We here denote this ability of visual perception as
equality. Obviously, this ability cannot discriminate the relationships between
the attribute values. Second, the model is further trained to know the intrinsic
orders or rankings of the values of the same attribute from two different objects.
In other words, the model acquires the ability to comprehend the relationships
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between the attribute values. We here denote this ability of visual perception as
ranking. To allow the model to acquire these abilities, we leverage contrastive
learning to make pair-wise comparisons between any two objects within each
RPM instance. For instance, the model is informed that two objects in an RPM
instance share the same color attribute, and further which one has a lighter color,
but not the exact color value in the metadata. To be specific, the corresponding
loss can be formulated as:

Lossa =
N∑

n=1

16∑

i,j=1

DJSD(s(n,a)ij , d(n,a)ij ), a ∈ {type, size, color} (3)

with s(n,a)ij =
{
P (l(n,a)i > l(n,a)j ), P (l(n,a)i = l(n,a)j ), P (l(n,a)i < l(n,a)j )

}
, (4)

d(n,a)ij =
{
P (y(n,a)i > y(n,a)j ), P (y(n,a)i = y(n,a)j ), P (y(n,a)i < y(n,a)j )

}
(5)
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2
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where N is the training batch size, DJSD means Jensen-Shannon divergence,
y(n,a)i , l(n,a)i are the predicted and ground-truth label of attribute a of the ith
object in the nth RPM respectively. Here, only existing objects in each panel
are used for training.

On the other hand, the input images may contain no objects, such as in
the 2× 2 Grid configuration. Hence, the model needs to discern the existence of
objects. We add a MLP for the attribute of existence as well. For the sake of
simplicity, we use negative log-likelihood loss that counts whether there exists
an object. In total, the loss is expressed as follows,

Loss = Lossexist + Losstype + Losssize + Losscolor (7)

3.3 Rule Inference

In the current model, the rule inference module is independent of the visual
perception module. Specifically, we implement non-symbolic inference using the
rule inference engine as used in the PrAE model [17], in which the probabilities
of object attributes are aggregated to obtain the probabilities of panel attributes.

papanel =
∑

exist

pexist · exp
(∑

obj log(p
a
obj)existobj∑

existobj

)
(8)

where p is a probability vector, exist is a binary vector describing the existence
of objects.

For each object attribute, the model calculates the probabilities of the poten-
tial rules based on the probabilities of panel attributes, and the rule with maxi-
mum normalized probability is chosen to be the predicted rule. Hence, the rule
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inference model cannot discover new rules, but discriminates the prior rule can-
didates, with an assumption that the model has full knowledge of the potential
rules.

Specifically, for attribute a, the probabilistic representation of the rule can be
obtained by calculating the hadamard-product of the attribute representation
and the rule mask,

P (r) =
∑

M∈mask(r)

∑

all elements

(p1, p2, p3, ......, pn)T $ M (9)

where p is a probability vector, M is a rule mask composed of 0, 1, and each
column represents the attribute representation of each panel under a certain
rule.

While the normalization process of rule probabilities can be formulated as
follows,

Pnorm(r) =
P (r)∑

r′∈E P (r′)
(10)

where E denotes the set of potential rules.

3.4 Answer Generation

Finally, the model predicts the potential rules of each attribute containing in
RAVEN through the rule inference engine and generates an aggregated prob-
ability distribution of attributes in the target panel (Fig. 1). Meanwhile, the
aggregated probability distributions of attributes for the candidate panels are
also computed by the visual perception module. We then compare the Jensen-
Shannon divergence (JSD) between the generated attribute probability distri-
butions with those of the candidates. The candidate with smallest divergence is
then selected as the answer. This process is similar to the supervised contrastive
learning approach used in the previous studies of CoPINet [3] and PrAE [19].

4 Experiments

4.1 Experimental Setup

We test SSCL-VAE in the RAVEN dataset including three benchmarks of
RAVEN [36], I-RAVEN and RAVEN-Fair. The three benchmarks share the same
problem contexts, but different candidate sets. We then use the same training
model to test its performance in the three benchmarks. We separately train
the models for the 7 different RAVEN configurations. We train our model on
6,000 samples in the training dataset and test the model on 2,000 samples in
the testing dataset for each configuration, while the validation dataset is not
used. The training procedure is separated into two phases. First, we pretrain
VAE with 50 neurons in the latent layer to represent the visual images for 100
epochs. In order to better achieve the reconstruction effect, the learning rate of
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ADAM optimizer is set to 0.001. Second, we simultaneously train both VAE and
MLP to discriminate the attribute values for 100 epochs and the learning rate
of the ADAM optimizer is set to 0.01. The batch size is 256 in both phases. The
inputs of the object images (160× 160) are resized to 32× 32. Further, we also
test the proposed model on the MNIST benchmark [37]. We train the model
on 60,000 samples in the training dataset, and test on 10,000 samples in the
testing dataset. The input size of the images is 28× 28, and the batch size is
also 256. All the models are implemented in PyTorch and runned with Intel(R)
Xeon(R) Platinum 8272CL CPUs and NVIDIA Geforce RTX 3090 Founders
Edition GPUs.

Table 1. Average accuracy (%) of different models.

Methods Avg Center 2× 2 3× 3 L-R U-D O-IC O-IG

RAVEN Equality 39.4 37.4 61.5 33.4 37.4 32.9 28.8 34.4

Ranking 80.1(+40.7) 89.3(+51.9) 82.3(+20.8) 76.3(+42.9) 88.8(+51.4) 88.3(+55.4) 72.0(+43.2) 63.9(+19.5)

Full 91.9 91.8 93.4 91.2 99.8 89.0 97.4 86.6

PrAE [19] 82.8 100.0 84.4 38.7a 95.2 95.9 96.0 69.5

I-RAVEN Equality 53.4 49.9 67.8 38.8 58.3 55.8 47.3 56.0

Ranking 85.9(+32.5) 92.6(+42.7) 85.2(+17.4) 81.9(+43.1) 92.3(+34.0) 91.9(+36.1) 84.5(+37.2) 72.8(+16.8)

Full 94.4 95.0 95.6 95.1 100.0 92.9 99.0 90.8

PrAE [19] 87.8 100.0 87.5 55.5a 97.6 98.1 98.4 78.0

RAVEN-Fair Equality 58.5 56.2 72.7 54.3 59.2 57.0 47.4 62.9

Ranking 88.3(+29.8) 94.0(+37.8) 87.0(+14.3) 84.5(+30.2) 94.6(+35.4) 93.8(+36.8) 83.8(+36.4) 80.2(+17.3)

Full 95.6 96.2 95.8 95.7 100.0 94.7 99.0 93.3

PrAE [19] 90.0 100.0 92.4 58.0a 98.0 98.8 98.3 84.8

Human [36] 84.4 95.4 81.8 79.5 86.4 81.8 86.4 81.8
a 3× 3 Grid is calculated by the training model of 2× 2 Grid.

4.2 Evaluation of General Performance in Three Benchmarks

We first evaluate SSCL-VAE performance in the three benchmarks of RAVEN,
I-RAVEN and RAVEN-Fair in comparison with different models that use dif-
ferent sources of metadata. The equality method means that the model has
unique and invariant representations of attributes, and the ranking method
means that the model can further infer the pair-wise relationships among the
same attribute, while the full method means that the model uses the concrete
labels of attribute metadata for training the model. We also compare with the
PrAE model in I-RAVEN [19], as our model share the rule inference engine with
PrAE. Table 1 shows the accuracies of different models. On average, the ranking
method achieves accuracies 41%, 32% and 30% higher than the equality method
in RAVEN, I-RAVEN and RAVEN-Fair, respectively, although lower than the
full method with the detailed labels of metadata of visual attributes. In contrast,
the PrAE model that alternatively uses the metadata labels of rules and the cor-
rect and incorrect answer panels as supervisions only achieves marginally better
performance than the ranking method. Hence, preposition of attribute relation-
ships in the frontend perception module, or rendering inductive inference to the
perception module, makes it available for rule inference, close to humans’ per-
formance (Table 1). However, simple attribute separation in visual perception
(the equality method) are insufficient to acquire such an inference ability. These
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results illustrate the reason why end-to-end supervised-learning DNNs are not
versatile for visual reasoning tasks.

4.3 Evaluation of Attribute and Rule Representations

To appreciate the benefits of the ranking method in comparison with the equality
method, we evaluate their attribute representations and rule representations. As
much expected, the representations of entities of each attribute (type, size and
color) do not necessarily match the actual entities, although these representations
are unique and invariant across objects (Fig. 2A upper). In particular, these
representations are not consistent across different configurations. In contrast,
the attribute representations in the ranking method considerably align well with
the ground truths of the order of attribute values in each category, even across
different configurations (Fig. 2A bottom). Accordingly, the rule representations
in the equality method are also inconsistent with the true rules (Fig. 2B upper).
Please keep in mind that the rules are entirely defined by the attribute values.
However, those representations in the ranking method largely align well with
the ground truths (Fig. 2B bottom). Hence, the local rankings result in global
match with the true order of attribute values, which in turn provides accurate
predicted rule simply by aggregations of distributed probabilities of attributes
across the context panels.

Fig. 2. The representations of object attributes and rules across all of the RAVEN
configurations. (A) The confusion matrix between the predicted attribute values and
ground truths. (B) The confusion matrix between the predicted rule values and ground
truths.

4.4 Evaluations of Generalizability

We further evaluate the generalizability of our proposed model in solving I-
RAVEN as examples. First, we evaluate cross-configuration generalizability for
our model using the ranking method. The models trained in the configurations
of Center, L-R, U-D and O-IC can solve the problems in the other simple config-
urations, but not on the configurations of the 2× 2 Grid, 3× 3 Grid, and O-IG.
In contrast, the models trained in the configurations of the 2× 2 Grid, 3× 3
Grid, and O-IG can fairly transfer to solve the problems in other configurations



408 A. Yin et al.

Fig. 3. Cross-configuration generalizability
on I-RAVEN.

Fig. 4. The accuracy change on I-
RAVEN with number of samples.

(Fig. 3). The cross-configuration generalizability using the ranking method is
similar as that using the full labels of metadata (Fig. 3). Second, we examine the
performance dependent on the training sample size. Figure 4 illustrates that the
ranking model is not so much sensitive to the training sample sizes (red line)
when the training sample size is larger than 2,000, while the metadata model
remains stable until the training sample size is no less than 1,000.

4.5 MNIST

Finally, we test the proposed models also on the MNIST benchmark (Fig. 5A).
The performance by the equality method is close to the chance level (10%),

Fig. 5. The performance of the two models on the MNIST dataset.(A) Visualization
of the MNIST dataset.(B) Accuracy (%) of different models. (C) The confusion matrix
between the predicted attribute values and ground truths.
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while that by the ranking method is as high as 99.1%, as same as the full meta-
data method (Fig. 5B). Again, although the entities are uniquely and invariantly
represented in the equality method, the distributed representations are not con-
sistent with the ground truths (Fig. 5C upper). Instead, the representations by
the ranking method are aligned well with the ground truths (Fig. 5C bottom).
Hence, the SSCL-VAE model may have broad applications in visual perception,
including both visual categorizing and visual reasoning.

5 Conclusion

In this paper we present SSCL-VAE, a semi-supervised model that obtains high
performance on three RAVEN benchmarks involving abstract visual reasoning.
The previous supervised learning on DNNs is dependent on the task-specific
knowledge from the answers and auxiliary annotations, and also mainly focus
on the rule inference module in the backend. By contrast, SSCL-VAE provides
an approach to establish the general cognitive abilities in human perception, but
not task-specific knowledge [9,10,38]. Thereby, it has strong robustness even for
small sample size for training and generalizability for cross-configuration tests.
Importantly, the current model empowers the general perception abilities, in
particular, the inference on the relations between visual attributes, and enables
non-symbolic inference with interpretability. The simplicity of this approach,
we believe, should afford its broad applications in solving other spatiotemporal
reasoning tasks [38,39].

The current model of SSCL-VAE also has some important limitations
deserved to be improved. First, SSCL needs partial information of metadata,
which is sometimes hard to access. It might be improved by self-supervised
method, rather than semi-supervised approach. Self-supervised contrastive learn-
ing has been broadly applied in computer vision [18,24], natural language pro-
cessing (NLP) [40,41], and other domains. Second, the model can be trained
by independent objects and tasks to construct its general cognitive abilities in
object perception including inductive inference. It remains to explore this poten-
tial by training independent tasks and testing on other independent tasks. Third,
more general cognitive abilities and higher-level cognitive function can be fur-
ther incorporated into the model to provide more versatile intelligent abilities in
solving complex tasks.
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