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Abstract. The current deep neural networks (DNNs) in mimicking human
perception remain challenges for solving visual reasoning tasks. Human per-
ception does not merely involve a passive observer labeling sensory signals,
but also contains an active inference about object attributes and their re-
lationships towards an intended output (e.g., an action). In this work, we
propose a variational autoencoder (VAE) model to discriminate the ranking
relationships between object attribute values by semi-supervised contrastive
learning, dubbed as SSCL-VAE. This perception-based model solves the vi-
sual reasoning task of Raven’s Progressive Matrices (RPM) in three bench-
marks (RAVEN, I-RAVEN and RAVEN-Fair), with high accuracy close to
humans, as well as many end-to-end supervised models. The current work
thus suggests that constructions of general cognitive abilities like human
perception may empower the perceptron with DNN to solve high-level cog-
nitive tasks such as abstract visual reasoning in a human-like manner.

Keywords: Perception - Inference - Contrastive Learning - Semi-supervised
- Autoencoder.

1 Introduction

Deep neural networks (DNNs) by end-to-end supervised learning have achieved
great success in visual categorizing, but are not versatile for visual reasoning[1I2]3].
The critical feature in abstract visual reasoning tasks, such as Raven’s Progressive
Matrices (RPMs) [4], is that the rules governing a sequence of entities are se-
mantically defined by their spatiotemporal relations [5]. Learning these semantic
relationships by supervisions is not straightforward. Even a number of end-to-end
supervised DNN models have been developed to achieve high performance in solv-
ing RPMs [T2I36l7I]], these models lack interpretability and generalizability. Thus
far, it remains challenging for DNNs to behave like humans in solving such visual
reasoning tasks [9UT0].

150 years ago, Dr. von Helmholtz addressed that the properties of the external
world are not directly provided by sensory inputs, but are probably inferred through
human hierarchic neural processes [11]. Perception is based on higher-order features
and their relationships, rather than locally defined features, related to the stimulus.
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Indeed, these attributes are mixed together and must be disentangled to make
explicit percepts [12I13].

Differing from the current DNN methods that need to learn from scratch the
associations between the contexts and the supervised labels with a huge number of
samples, humans do not rely on such domain-specific knowledge or experiences in
RPMs, but their prior general cognitive abilities in recognition of object attributes
and their relationships. Although humans at a very early stage of life have no such
a concept of semantics and symbols, they can recognize varieties of objects [14],
and comprehend simple rules governing the world and apply these rules to new
contexts [15]. Importantly, the object attribute representations in the human brain
are unique and invariant in different contexts [I6JI7], and the context-dependent
relationships between attributes among the objects are implicitly inferred [I1]. For
instance, we recognize the same color of ‘green’ from different objects and further
recognize that the ‘green’ color looks lighter than the ‘red’ color, but darker than
the ‘cyan’ color.

Inspired by these insights from human perception, we move a step further to-
wards visual reasoning ability of artificial intelligence (AI) on the basis of the gen-
eral cognitive abilities in object perception as humans do. In this work, we propose
a variational autoencoder (VAE) model for visual perception by semi-supervised
contrastive learning (SSCL), dubbed as SSCL-VAE. The motivation of the SSCL
method is to make embeddings of the same attribute from different objects are
close to each other while embeddings of different attributes are separated away
from each other [I8]. Rule logic execution in this model follows the approach of
probabilistic abduction and execution (PrAE) model [I9], in which the inference
engine aggregates distributed representations of a set of object attributes in the
context panels to infer a posterior probabilistic representation of the target panel.
Notably, the PrAE model is originally trained by supervisions of both the correct
and incorrect answers, and also the ground truths of rules (metadata) contained
in each RPM problem as auxiliary annotations. In this work, without these ample
supervisions, SSCL-VAE merely enforces human-like perceptual abilities, in par-
ticular, the ability of qualitative comparisons between object attribute values from
the different objects in the context sets, but not the answer sets. The proposed
model obtains accuracies as high as humans, and many of the previous supervised
models in solving RPMs in three benchmarks. Importantly, we demonstrate that
constructions of human-like perception abilities on DNNs can empower Al such a
capability of solving abstract visual reasoning in a human-like manner. To the best
of our knowledge, this has not yet been explored in the domain of visual reasoning
tasks.

2 Related work

2.1 Object representations

Recognition of object attributes is critical to solve visual reasoning tasks, as the
latent relations, namely rules, that govern the context of instance are defined by
these visual features. DNNs are believed to versatilely fit any desired function with
a constraint of the loss function. However, the embeddings of latent attributes are
too flexible to comply well with the semantics of object attributes that are used
in these tasks, such as types, sizes, and colors in the RAVEN dataset [TI2J3I6I7].
Instead, the object attributes are often blended in the latent embeddings. Recently,
variational autoencoder (VAE) [2002T122] and neural-vector[23] models have been
proposed to build stable representations and to disentangle the blended representa-
tions of object attributes. A straightforward approach to parcel objects into desired
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attribute representations is to use the metadata of object attributes as auxiliary
annotations to train the perception module. However, the prior annotations are
needed to label by humans. In image recognitions, SSCL has been used to discover
better representations by comparing the relationship representations from the same
or different attributes[I824]. We here leverage this method in cooperation with a
VAE model to shape the latent embeddings, in order to enable the model to have
simple relational inference capabilities. This proposed model thus constrains the
representations of the same attribute to be invariant across different objects, im-
portantly complying with the rankings of attribute values too.

2.2 Visual reasoning

Most of supervised models designed to solve visual reasoning tasks mainly fo-
cus on the visual reasoning process[T2I3/67I8], as the baselines of DNNs fails to
solve these high-level cognitive tasks. A common motivation for visual reasoning
models is to learn relational representations of latent rules by maximizing similar-
ity between analogical relations and minimizing similarity between non-analogical
relations[251261272829/30031]. This is achieved by comparing the relational repre-
sentations with correct and incorrect answers. In striking contrast, the proposed
model here embeds the relational representations in the perception module.

2.3 Neuro-symbolic models

Unlike the monolithic DNN models, the neuro-symbolic models are composed of
a perception module at the frontend and an inference module at the backend
[26132133]134]. Nonetheless, it remains challenging to train the neuro-symbolic mod-
els with the end-to-end supervised training form. Thereby, auxiliary annotations
of the latent rules are additionally used to constrain the rule representations in
the PrAE model[19]. Although the currently proposed model partially shares the
inference engine with the PrAE model, we here use SSCL to train the visual per-
ception module alone. Semi-supervised learning (SSL) has been also used to solve
visual reasoning tasks, such as RPMs [356]. However, the conventional SSL com-
bines a large number size of labeled data and a small number size of unlabeled
data. In contrast, SSCL used here has no concrete labels, but the pair-wise rank-
ings that are partially supervised. For this reason, the current method is also called
semi-supervised.

3 Methods

In the RAVEN dataset[37I38], each problem consists of 9 panels in a form of 3x3
matrix with 8 context panels and a missing panel at the last panel. The goal of
the task is to find out one from 8 candidate panels that completes the matrix
with satisfactions of the row-wise latent rules governing the organization of object
attributes Figure [Il Besides, there are 7 configurations [Center, Left-Right (L-
R), Upper-Down (U-D), 2x2 Grid, 3x3 Grid, Out-In Center (O-IC), Out-In Grid
(O-1G)] in the RAVEN dataset. In different configurations, objects in panels are
organized differently. We train an independent model for each configuration.
Overall, the task requires two independent cognitive abilities of object percep-
tion and rule inference. If perception on object attributes is perfect, then the process
of identifying the latent rules becomes plain, an exhaustive search within the rule
space in a finite set [38]. Differing from the visual perception tasks, the object at-
tributes are also latent in visual reasoning tasks, but are conventionally required to
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Fig. 1. Description of SSCL-VAE model. (A) The representative examples of semi-
supervised contrastive learning in the equality and ranking methods, respectively. (B)
A schematic of the model architecture. Please see the main text for details.

infer from the spatiotemporal relations from the context in each instance. In other
words, both the object attributes and rules remain to be identified. This is hard to
implement in DNNs, and also remains challenging for the neuro-symbolic models.
The novelty of SSCL-VAE here mainly focuses on the learning approach, rather
than the DNN architecture (Figure .

3.1 Object-based variational autoencoder

We use VAE as the backbone of the visual perception module. VAE consists of an
encoder that maps the visual inputs to latent representations and a decoder that is
required to reconstruct the input images reversely from the latent representations.
We first take each object in each panel as the input and pretrain the VAE with the
loss as follows,

Lossyar = . (11— #lla + Dicr (M (e, 02N (0, 1)) (1)
with Dgr (pllq) = Zpi (log(pi) — log(a:)), (2)
i
where z is the input (original) image, & is the reconstructed image, || - || means

L2 norm, Dgr means Kullback-Leibler divergence, and A (i, 0%) means Gaussian
distribution with the mean p and standard deviation o.

The requirement of reconstruction ensures plenty of information in the latent
embeddings of objects and also helps to stabilize the representations in later train-
ing. In the configuration such as 2x2 Grid, there may exist multiple objects in a
panel. We then try to capture all the objects by selecting regions of interest, though
the existence of objects in regions is not guaranteed.
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3.2 Attribute discrimination

Differing from the conventional VAE for image reconstruction, the visual perception
module is additionally required to discriminate the object attributes, such as type,
size and color in RPMs. To do so, we add an additional multi-layer perceptron
(MLP) for each attribute to transform the latent embeddings in VAE into the
distributed probabilities belonging to the separate attribute values, in which the
dimension of type, size and color attribute is 5, 6 and 10, respectively. To train the
MLP and finetune the encoder of VAE, we use the information of metadata of object
attributes as auxiliary annotations. However, instead of the exact labels, we train
the model to acquire two common-sense knowledge on these visual attributes. First,
the model is trained to know whether the values of the same attribute from any
pair of objects are equivalent or not. In other words, the representations of visual
attributes in the model are unique and invariant across different objects. We here
denote this ability of visual perception as equality. Obviously, this ability cannot
discriminate the relationships between the attribute values. Second, the model is
further trained to know the intrinsic orders or rankings of the values of the same
attribute from two different objects. In other words, the model acquires the ability
to comprehend the relationships between the attribute values. We here denote this
ability of visual perception as ranking. To allow the model to acquire these abilities,
we leverage contrastive learning to make pair-wise comparisons between any two
objects within each RPM instance. For instance, the model is informed that two
objects in an RPM instance share the same color attribute, and further which one
has a lighter color, but not the exact color value in the metadata. To be specific,
the corresponding loss can be formulated as:

Loss, = Z Z Djsp(s (” a),dl(J" a)) a € {type, size, color} (3)

n=114,j=1
with (7 = [P > 1), P = 1), PO < 1)), (4)

dE;L,a) _ {P(yz(n,a) > y](_n,a)),P(ygn,a) _ y](_n,a)),P(ygn,a) < y](_n,a))} (5)

P 4 D (a2, (6)

DKL (| 5

Dysp(p.q) = 5

where [V is the training batch size, D ;gp means Jensen-Shannon divergence, y;
are the predicted and ground-truth label of attribute a of the ith object in the nth
RPM respectively. Here, only existing objects in each panel are used for training.

On the other hand, the input images may contain no objects, such as in the
2x2 Grid configuration. Hence, the model needs to discern the existence of objects.
We add a MLP for the attribute of existence as well. For the sake of simplicity,
we use negative log-likelihood loss that counts whether there exists an object. In

total, the loss is expressed as follows,

Loss = LosSepist + L0SStype + L08Sgize + L0SScolor (7

3.3 Rule inference

In the current model, the rule inference module is independent of the visual per-
ception module. Specifically, we implement non-symbolic inference using the rule

(n,a) l(n,a)
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inference engine as used in the PrAE model [I7], in which the probabilities of object
attributes are aggregated to obtain the probabilities of panel attributes.

( Zobj log(pgbj)e:cistobj >

pganel = Z Pexist - €XP (8)

exist

> existyy;

where p is a probability vector, exist is a binary vector describing the existence of
objects.

For each object attribute, the model calculates the probabilities of the potential
rules based on the probabilities of panel attributes, and the rule with maximum
normalized probability is chosen to be the predicted rule. Hence, the rule inference
model cannot discover new rules, but discriminates the prior rule candidates, with
an assumption that the model has full knowledge of the potential rules.

Specifically, for attribute a, the probabilistic representation of the rule can be
obtained by calculating the hadamard-product of the attribute representation and
the rule mask,

P(r) = Z Z (p1, P2, P35 -ee- o)l OM (9)

Memask(r) all elements

where p is a probability vector, M is a rule mask composed of 0, 1, and each column
represents the attribute representation of each panel under a certain rule.

While the normalization process of rule probabilities can be formulated as fol-
lows,

P(r)
ZT’GE P(rl)

where E denotes the set of potential rules.

Poorm (T) = (10)

3.4 Answer generation

Finally, the model predicts the potential rules of each attribute containing in
RAVEN through the rule inference engine and generates an aggregated probability
distribution of attributes in the target panel (Figure. Meanwhile, the aggregated
probability distributions of attributes for the candidate panels are also computed
by the visual perception module. We then compare the Jensen-Shannon divergence
(JSD) between the generated attribute probability distributions with those of the
candidates. The candidate with smallest divergence is then selected as the answer.
This process is similar to the supervised contrastive learning approach used in the
previous studies of CoPINet[3] and PrAE [I9].

4 Experiments

4.1 Experimental setup

We test SSCL-VAE in the RAVEN dataset including three benchmarks of RAVEN
[38], I-RAVEN and RAVEN-Fair. The three benchmarks share the same problem
contexts, but different candidate sets. We then use the same training model to
test its performance in the three benchmarks. We separately train the models for
the 7 different RAVEN configurations. We train our model on 6,000 samples in the
training dataset and test the model on 2,000 samples in the testing dataset for each
configuration, while the validation dataset is not used. The training procedure is
separated into two phases. First, we pretrain VAE with 50 neurons in the latent
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layer to represent the visual images for 100 epochs. In order to better achieve the
reconstruction effect, the learning rate of ADAM optimizer is set to 0.001. Second,
we simultaneously train both VAE and MLP to discriminate the attribute values
for 100 epochs and the learning rate of the ADAM optimizer is set to 0.01. The
batch size is 256 in both phases. The inputs of the object images (160 x 160)
are resized to 32 x 32. Further, we also test the proposed model on the MNIST
benchmark [39]. We train the model on 60,000 samples in the training dataset, and
test on 10,000 samples in the testing dataset. The input size of the images is 28
x 28, and the batch size is also 256. All the models are implemented in PyTorch
and runned with Intel(R) Xeon(R) Platinum 8272CL CPUs and NVIDIA Geforce
RTX 3090 Founders Edition GPUs.

Table 1. Average accuracy(%)of different models.

methods Avg Center  2x2 3x3 L-R U-D O-1C O-1G
equality  39.4 374 615 334 374 329 288 344
. 80.1  89.3 823 763 888 8.3 720 639

RAVEN | ranking | 40,7 ) (+51.9) (+20.8) (+42.9) (+51.4) (+55.4) (+43.2) (+19.5)
full 919  91.8 934 912 998  89.0 974 866
PrAE [T9) 828  100.0 844 387" 952 959 960  69.5
equality 534 499  67.8 388 583 558  47.3  56.0
859 926 852 819 923 919 845 728

(+32.5) (+42.7) (+17.4) (+43.1) (+34.0) (+36.1) (+37.2) (+16.8)
full 944 950 956 951 1000 929  99.0  90.8
PrAE [I9) 878  100.0 875  555' 976 981 984 780
equality 585  56.2 727 543 592  57.0 474 629
. . 883 940  87.0 845 946 938 838 802

RAVEN-Fair| ranking 59 8) (137.8) (+14.8) (+30.2) (+35.4) (+36.8) (+36.4) (+17.3)
full 956 962 958 957 1000 947  99.0 933
PrAE [I9) 900  100.0 924  580° 980 988 983 848
Human 38) 844 954 818 795 864 818 864 818

13 x 3 Grid is calculated by the training model of 2 x 2 Grid.

LRAVEN ranking

4.2 Evaluation of general performance in three benchmarks

We first evaluate SSCL-VAE performance in the three benchmarks of RAVEN, I-
RAVEN and RAVEN-Fair in comparison with different models that use different
sources of metadata. The equality method means that the model has unique and
invariant representations of attributes, and the ranking method means that the
model can further infer the pair-wise relationships among the same attribute, while
the full method means that the model uses the concrete labels of attribute metadata
for training the model. We also compare with the PrAE model in I-RAVEN [19], as
our model share the rule inference engine with PrAE. Table 1 shows the accuracies
of different models. On average, the ranking method achieves accuracies 41%, 32%
and 30% higher than the equality method in RAVEN, - RAVEN and RAVEN-
Fair, respectively, although lower than the full method with the detailed labels
of metadata of visual attributes. In contrast, the PrAE model that alternatively
uses the metadata labels of rules and the correct and incorrect answer panels as
supervisions only achieves marginally better performance than the ranking method.
Hence, preposition of attribute relationships in the frontend perception module,
or rendering inductive inference to the perception module, makes it available for
rule inference, close to humans’ performance (Table . However, simple attribute
separation in visual perception (the equality method) are insufficient to acquire such
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an inference ability. These results illustrate the reason why end-to-end supervised-
learning DNNs are not versatile for visual reasoning tasks.

4.3 Evaluation of attribute and rule representations

To appreciate the benefits of the ranking method in comparison with the equality
method, we evaluate their attribute representations and rule representations. As
much expected, the representations of entities of each attribute (type, size and
color) do not necessarily match the actual entities, although these representations
are unique and invariant across objects (Figure upper). In particular, these
representations are not consistent across different configurations. In contrast, the
attribute representations in the ranking method considerably align well with the
ground truths of the order of attribute values in each category, even across different
configurations (Figure bottom). Accordingly, the rule representations in the
equality method are also inconsistent with the true rules (Figure [2B upper). Please
keep in mind that the rules are entirely defined by the attribute values. However,
those representations in the ranking method largely align well with the ground
truths (Figure bottom). Hence, the local rankings result in global match with
the true order of attribute values, which in turn provides accurate predicted rule
simply by aggregations of distributed probabilities of attributes across the context
panels.

equality

ranking

Fig. 2. The representations of object attributes and rules across all of the RAVEN con-
figurations. (A) The confusion matrix between the predicted attribute values and ground
truths. (B) The confusion matrix between the predicted rule values and ground truths.

4.4 Evaluations of generalizability

We further evaluate the generalizability of our proposed model in solving - RAVEN
as examples. First, we evaluate cross-configuration generalizability for our model
using the ranking method. The models trained in the configurations of Center,
L-R, U-D and O-IC can solve the problems in the other simple configurations,
but not on the configurations of the 2x2 Grid, 3x3 Grid, and O-IG. In contrast,
the models trained in the configurations of the 2x2 Grid, 3x3 Grid, and O-IG can
fairly transfer to solve the problems in other configurations (Figure [3]). The cross-
configuration generalizability using the ranking method is similar as that using the
full labels of metadata (Figure . Second, we examine the performance dependent
on the training sample size. Figure [4] illustrates that the ranking model is not so
much sensitive to the training sample sizes (red line) when the training sample size
is larger than 2,000, while the metadata model remains stable until the training
sample size is no less than 1,000.
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4.5 MNIST

Finally, we test the proposed models also on the MNIST benchmark (Figure )
The performance by the equality method is close to the chance level (10%), while
that by the ranking method is as high as 99.1%, as same as the full metadata
method (Figure ) Again, although the entities are uniquely and invariantly rep-
resented in the equality method, the distributed representations are not consistent
with the ground truths (Figure[5|C upper). Instead, the representations by the rank-
ing method are aligned well with the ground truths (Figure bottom). Hence,
the SSCL-VAE model may have broad applications in visual perception, including
both visual categorizing and visual reasoning.
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Fig. 5. The performance of the two models on the MNIST dataset.(A) Visualization of the
MNIST dataset.(B) Accuracy (%) of different models. (C) The confusion matrix between
the predicted attribute values and ground truths.



10 Yin et al.

5 Conclusion

In this paper we present SSCL-VAE, a semi-supervised model that obtains high
performance on three RAVEN benchmarks involving abstract visual reasoning. The
previous supervised learning on DNNSs is dependent on the task-specific knowledge
from the answers and auxiliary annotations, and also mainly focus on the rule
inference module in the backend. By contrast, SSCL-VAE provides an approach to
establish the general cognitive abilities in human perception, but not task-specific
knowledge [9JT0/40]. Thereby, it has strong robustness even for small sample size for
training and generalizability for cross-configuration tests. Importantly, the current
model empowers the general perception abilities, in particular, the inference on
the relations between visual attributes, and enables non-symbolic inference with
interpretability. The simplicity of this approach, we believe, should afford its broad
applications in solving other spatiotemporal reasoning tasks [40/41].

The current model of SSCL-VAE also has some important limitations deserved
to be improved. First, SSCL needs partial information of metadata, which is some-
times hard to access. It might be improved by self-supervised method, rather than
semi-supervised approach. Self-supervised contrastive learning has been broadly
applied in computer vision [1824], natural language processing (NLP) [42l43], and
other domains. Second, the model can be trained by independent objects and tasks
to construct its general cognitive abilities in object perception including induc-
tive inference. It remains to explore this potential by training independent tasks
and testing on other independent tasks. Third, more general cognitive abilities
and higher-level cognitive function can be further incorporated into the model to
provide more versatile intelligent abilities in solving complex tasks.
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