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We do not have knowledge of a thing until we have grasped its why,
that is to say, its cause.
— Aristotle, Physics

Causality and identification of the underlying mechanisms are
the goals of scientific research. Many researchers devote their ef-
forts to the formal formulation of causal inference to bridge the
philosophical thinking and theoretical foundation for applied sci-
ences, e.g. medical and health research, so that causal conclu-
sions can be made. Nevertheless, the lure of fancy causal claims
without clarity and rigorous sensitivity analysis can be mislead-
ing (Mehler & Kording, 2020). In this short review, we introduce
the statistical basics for causal inference and the most commonly
used methods to estimate causal effects, and provide suggestions
for conducting open and reproducible causal analyses with clarity.

The Rising Trend of Causal Related Research

Causal inference is one of the most popular topics in statistics,
and its applications in both experimental and observational re-
search have exponentially grown. Figure 1 shows the number of
publications related to causal research as an indicator of its popu-
larity in different research disciplines. The data are obtained from
a PubMed search using expressions such as “(causal OR causality)
AND (discipline)”based on the texts of publication without further
manual content validation, the full details of which are available
on the GitHub repo: https://github.com/Vincent-wg/causal_liter
ature_trend. As illustrated in Fig. 1, causal related research has
the richest literature and the largest number of published papers.
Clinical related causal research has the second largest number
of papers published. Both neurology and psychiatry show similar
escalating trends. Interestingly, the rising slope of neurology ex-
ceeded that of psychiatry in 2014, which may indicate that the ap-
plication of causal related analysis has become more widespread
in neurology than in psychiatry. However, it is hard to know the
reasons for such changes without a detailed in-depth literature
review. Neuroimaging has recently enjoyed a burst of applications
in clinical practice, especially in neurology and psychiatry, yet it
has the smallest number of published papers. This may be related
to the complexity and high-dimensional nature of neuroimaging
data and modeling. In conclusion, the number of causal related
publications is increasing.

The misuse and misinterpretation of statistical methods have
contributed to the reproducibility crisis (Adler et al., n.d.; Baker,

2016; Open Science Collaboration, 2015; Wang et al., 2023). By anal-
ogy, the boosting of causal related research calls for better com-
munication and interpretation of causal analysis. The aim of this
mini review is to raise the awareness of the clarity when report-
ing and interpreting causal related research so that the misuse
and misinterpretation can be reduced.

Basics of Causal Inference

In this review, we limit our discussion of causal inference to
the evaluation of causal effects rather than the identification of
causal mechanisms. Causal inference can be conducted by (i) for-
mulating the research question in a causal framework; (ii) spec-
ifying assumptions based on which causal effects can be identi-
fied; and (iii) assessing the sensitivity to the violation of causal
assumptions. There are two main causal inference frameworks:
the potential outcome (PO) framework (Hernan & Robins, 2020)
and the causal diagram framework (Judea Pearl, 2009). These two
frameworks are mathematically connected with different estab-
lished goals (Richardson & Robins, 2013). We will focus on the PO
framework in this review as most of the literature reviewed falls
under the umbrella of the PO framework.

First, we briefly review the key concepts in the PO framework
as illustrated in Fig. 2: (i) unit, the person or subject on whom the
treatment will be operated; (ii) target population, a well-defined
population of units whose causal effects are going to be estimated,
(iii) sample, a random sample of N from the target population,
the data collected from the sample being used for further anal-
ysis; (iv) treatment (intervention/exposure/manipulation), the ef-
fects of which the investigator would like to assess compared to
no such treatment; and (v) outcome, the final observation after
treatment (can be no treatment). The PO framework aims to an-
swer the question “what would potentially happen to the same
units or participants had they exposed to a different (counterfac-
tual) condition (treatment)?” By definition, we can never observe
the individual treatment effect (ITE) since we can only observe the
outcome from one treatment at a time (illustrated in Fig. 2A). Most
of the time, the average treatment effect (ATE) or average treat-
ment effectin the treated (ATT) is the main causal effect we would
like to estimate (as illustrated in Fig. 2B). Stated formally, causal
inference is to estimate the causal effect from the outcome of a
treatment, intervention, exposure, or manipulation with observed
confounders and/or covariates and unobserved confounders
and/or covariates.
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Figure 1: Causal related research literature from PubMed search.

A
Treatment Potential Qutcome
Individual Treatment Effect
o (° A > (ITE)
e §—i
. : rm\ i
(unobservable)
Individual/Unit No treatment
B

Randomly assigned treatment

e
y
Y

W o

Experiment
Sample

Treated
group

¥
y

o= o =)o

Ahe=)e=x)e

spe=ne=r)e=x)e
sJe=n)e=Je=r)e

Observed outcome
Average Treatment Effect

(ATE)

Average Treatment Effect
in the treated (ATT)

JirMe -0

Figure 2: Visual illustrations of the basic concepts in causal inference. (A) ITE. Since the individual cannot simultaneously receive and not receive the
treatment, we are unable to observe the difference between the POs (icon with boundary) of receiving treatment and not receiving treatment for the
same individual, i.e. ITE is unobservable; (B) ATE and ATT. ATE is the average treatment effect for the whole group while ATT is the average treatment
effect for the treated group, ATE = ATT for the ideal RCT (being in the control or treatment group is random and unrelated to the outcome), but they
are not necessarily the same in the observational studies. We use the observed outcome to estimate ATE and ATT.

Traditional statistical inference draws conclusions based on as-
sociations, and the main differences between these traditional
data analyses and causal inference lies in the causal assump-
tions, i.e. the identification conditions for causal effects. One ba-
sic assumption for causal inference is the stable unit treatment
value assumption (SUTVA): “The potential outcomes for any unit
do not vary with the treatments assigned to other units, and, for

each unit, there are no different forms or versions of each treat-
ment level, which lead to different potential outcomes” (Imbens
& Rubin, 2015). SUTVA describes the basic properties of treatment
unite and connects the intervention we observed with the causal
intervention of interest, and it is a strong assumption about no
interference and no multiple versions of a treatment, which con-
tributes to a well-defined intervention.
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Causality in Experimental and
Observational Research

The golden standard of estimating causal effects is the ideal ran-
domized controlled trial (RCT) (Hernan & Robins, 2020), where
RCT is a true random sample from the target population. In ad-
dition to the SUTVA, an ideal RCT with well-established random
treatment assignment mechanisms allows the inference of causal
effects since it satisfies the following assumptions: (i) “Uncon-
foundedness” (or “Ignorability,” “Exchangeability”), (i) “Positivity”
(or “overlap”), and (iii) “Consistency” (part of the SUTVA assump-
tion) (Cole & Frangakis, 2009). Specifically, Unconfoundedness as-
sumes the independence of treatment assignment and the out-
comes, which implies that within the subpopulations defined by
the values of observed covariates, the treatment assignment is
random, i.e. treated and untreated participants, censored and un-
censored participants have equal distributions of POs. Consis-
tency assumes that an individual’s PO under the observed expo-
sure history is precisely the observed outcome. Positivity assumes
that all the levels of exposure for every combination of values of
exposure and confounders occur among individuals in the popu-
lation. However, these assumptions cannot always be met, and the
ideal RCT can be compromised due to ethical, economical, pro-
tocol violations, and other limitations that endanger the estima-
tion of causal effect. Therefore, clarifying causal assumptions and
constructing a meaningful causal estimand to draw interpretable
causal conclusions is highly challenging, especially for observa-
tional studies (Liu et al., 2021).

In observational studies, we can neither control nor be clear
about the intervention assignment mechanisms, and it is com-
mon to violate some or all of the assumptions from before, which
makes justification of causal assumptions essential. For exam-
ple, assuming there are no unobserved confounders, failure in
randomized assignment of the treatment may cause imbalanced
covariates between the treatment and control groups. As a re-
sult, statistical methods must be introduced to balance these two
groups, and the typical procedures include regression, match-
ing, propensity score-based methods (such as inverse probability
weighting) or their combination such as double robust (DR) esti-
mators (Liet al., 2018). When researchers are not confident that all
confounders are fully observed and correctly measured, instru-
mental variable techniques are introduced to circumvent these
limitations. (Marinescu et al., 2018; Liu et al., 2021).

The key logic of causal inference in observational studies is
to mimic a target experiment (trial) that produces similar re-
sults to an RCT in a hypothesized population. For example, quasi-
experimental approaches have been widely used in economics
and psychology. Liu, Marinescu and others have reviewed this
family of methods including regression discontinuity design, dif-
ference in difference, and instrumental variables (IV) (Liu et al,,
2021; Marinescu et al., 2018). An IV is a variable that is only asso-
ciated with the exposure to the intervention but not with other
factors associated with the outcome of interest. Using IV does
not require the assumption of unconfoundedness, but three other
conditions should be met: namely, the relevance condition, the ex-
clusion restriction, and the marginal exchangeability (Hernan &
Robins, 2020). Regression discontinuity design is a special case of
IV that uses the discontinuity feature of the running variable as
IV. Another commonly used IV in life sciences is genetics, which is
assumed to be randomly inherited from the parents, and the cor-
responding approach is called Mendelian randomization (Burgess
& Thompson, 2021). All these models and approaches rely heavily
on strong assumptions and complex computations, which means
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the results can be very different on any meaningful violation of
assumptions or any changes in the algorithms or computing en-
vironment. Sensitivity analysis is also necessary to assess such
biases.

Causality in Clinical Neuroscience

The current causal inference framework from the statistics world
has not been properly translated to face the challenges in clini-
cal neuroscience research due to its intrinsic complexity includ-
ing but not limited to the lack of RCT data sources due to ethical
concerns or other factors such as cost, the justifications of causal
assumptions for experiments other than an ideal RCT or observa-
tional studies, and the definition of an intervention, which is more
complicated than just taking or not taking a specific medicine,
and it can be one of many types of brain stimulation, modula-
tion, or even targeted surgery. In addition, Barack et al. have called
for more clarity about causality in neuroscience research since
the word “causality” can refer to as different meanings in neu-
roscience (Barack et al., 2022), some neuroscientists believed that
causes are the events that produce other events while others may
think that causes are the factors that events depend on. Such am-
biguous definitions of “causes” impedes the communication and
interpretation of causal analyses from different researchers. Tak-
ing clinical research as an example, Siddigi et al. have reviewed
most of the available interventions in clinical neuroscience prac-
tice regarding mapping human brain functions and have brought
about six criteria for appraising causality adapted from Bradford
Hill criteria: counterfactual, specificity, experimental manipula-
tion, dose-response relationship, coherence, and reversibility (Sid-
diqi et al., 2022). They also suggested that causal claims based on
purely correlation results should be avoided. There are various
types of intervention used in clinical neuroscience, such as drugs,
non-invasive neuroimaging with stimuli, neurofeedback, lesion,
brain stimulation, etc. It is not easy to model all of these inter-
ventions with a unified causal framework so that they are com-
parable, a binary variable (whether to use or not to use a specific
type of intervention) is insufficient to capture the full informa-
tion of these interventions (SUTVA assumption is very likely to be
violated); a multivariate mechanistic approach might be helpful,
such as dynamic causal modeling (Friston et al., 2003), which tries
to capture the complex mechanism of how the specific interven-
tion (experimental task design) changes the outcome with a dy-
namical biophysical forward model. Reid et al. attempted to for-
mulate functional connectivity estimates using a causal frame-
work but ended up by using vague definitions and mixing dif-
ferent levels of concepts (Reid et al.,, 2019). For example, there is
no clear definition of the “causal effect of interest,” but a rather
general term “target theoretical properties” was used. The defini-
tion of “confounding properties” mainly includes artifacts during
the imperfect measurement of functional connectivity, but there
are so many more confounding sources outside the measurement
procedure, such as age, sex, and so on. Another emerging trend
is the mining of large-scale observational imaging datasets and
imaging-derived phenotypes with the Mendelian randomization
approach, i.e. using genome as an instrumental variable to eval-
uate the potential causal relationships between imaging-derived
phenotypes and neurological or psychiatric disorders (Guo et al.,
2022; Taschler et al., 2022). In summary, solid statistical-based
causal inference is still lacking in clinical neuroscience research,
and we are still at the stage of formulating the questions prop-
erly with causal language, where the process can be benefited by
interdisciplinary collaborations.
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Claim Causality with Clarity

Clarity and sensitivity analyses are crucial for causal inference,
especially in observational studies. To promote open and repro-
ducible research (Jin et al., 2022) and to avoid further mis-claiming
or misinterpretation of causal analysis, we encourage the re-
searchers to report: (i) full details of the causal formulation of the
research question and the reasoning behind the causal model (can
be represented by a directed acyclic graph or DAG), including: (a)
study type (whether this is a RCT or observational study), (b) well-
defined causal effect of interest (e.g. ATE or ATT), including clear
descriptions of treatment/intervention/exposure/manipulation,
confounder selection and its rationale, known unobserved con-
founders with corresponding assumptions about them, and (c) the
observed outcome (continuous or binary, etc.); (ii) all the neces-
sary assumptions condition on which the causation can be inter-
pretated, especially for observational studies, e.g. whether Uncon-
foundedness, positivity, and consistency are reasonable assump-
tions for this study; (iii) full details of the causal estimand, includ-
ing (a) the statistical approach and (b) the effect size of the causal
effect, such as the estimation of ATE or ATT or causal odds ratios;
(iv) the results of sensitivity analysis, for both the meaningful vi-
olations of the assumptions in (ii) and different model estimation
algorithms. With all necessary information shared, readers and
reviewers should be able to replicate and generalize such causal
analyses and have a better understanding of the strength of the
causal claims.

Summary

In this mini review, we started with a simple literature search on
causal analyses and showed its exponential accumulation and
similar increasing trends in clinical research, neurology, and psy-
chiatry. We introduced the basic ideas and the concepts of causal
inference under the PO framework and explained the key differ-
ences of causal inference in RCT and observational studies. We
also reviewed the most recent literature on causal analysis in clin-
ical neuroscience and the related neuroimaging studies, it is fruit-
ful, yet more efforts are still needed for formal causal formulation
and interpretation. We conclude this review with four recommen-
dations for conducting open and reproducible causal inference re-
search.
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