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Abstract
Raven’s Progressive Matrices (RPM) have been widely used as standard intelligence tests for human participants. Humans 
solve RPM problems in a hierarchical manner, perceiving conceptual features at different levels and inferring the latent 
rules governing the matrix using cognitive maps. Although the latest AI algorithms can surpass human performance, little 
effort has been made to build a model that solves RPM problems in a human-like hierarchical manner. We built a human-
like hierarchical neuro-symbolic model to solve RPM problems. The proposed model consists of a semantic-VAE (sVAE) 
perceptual module and a cognitive map reasoning back-end (CMRB). The supervised sVAE extracts the hierarchical visual 
features of RPMs by perceiving the structural organization of RPMs through a convolutional neural network and disentan-
gles objects into semantically understandable features. Based on these semantic features, the CMRB predicts the semantic 
features of objects in the missing field using cognitive maps generated by supervised learning or manually designed. The 
answer image was generated by sVAE using the semantic features predicted by CMRB. The proposed model achieved state-
of-the-art performance on three benchmarks datasets—RAVEN, I-RAVEN, and RAVEN-fair—generalizes well to RPMs 
containing objects with untrained feature dimensions, mimics human cognitive processes when solving RPM problems, 
achieves interpretability of their hierarchical processes, and can also be applied to some real-world situations that require 
abstract visual reasoning.

Keywords Raven’s Progressive Matrices · Semantic-variable autoencoders · Cognitive maps · Visual abstract reasoning · 
Artificial intelligence

Introduction

The ability to generalize is critical for humans to reason 
flexibly and quickly [1, 2]. A commonly studied neural 
mechanism for generalization is how humans build cognitive 
maps in the entorhinal cortex using grid cells that factorize 
representations of hippocampal place cells [2, 4] for spatial 
generalization [1, 3]. Researchers have found that similar 
principles apply in nonspatial domains [2]. For example, in 
the semantic domain, when faced with the simple problem 
“woman-man, queen-?”, people first factorize the “queen” 
into gender and status representations, and then generalize 
in the gender dimension [2, 5]. Because this (semantic) cog-
nitive map reasoning process is the foundation of abstract 
reasoning, we built a general model to mimic the human 
reasoning process when solving RAVEN problems.

Raven’s Progressive Matrices (RPM) [6] have been 
widely used as standard intelligence tests for human par-
ticipants [7, 8]. Each test takes the form of a 3 × 3 matrix 
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with the bottom right panel missing. Participants are asked 
to identify the underlying rules that govern the progression 
of the matrix and to apply the rules to complete the miss-
ing entry of the matrix. Human participants have relied on 
conceptual semantic abstraction and analogical reasoning 
to solve RPM problems [9, 10]. Semantic abstraction can 
occur in Gestalt hierarchical perception [11, 12], and ana-
logical reasoning can easily generalize learned knowledge 
to new situations [13, 14].

Many efforts have been made to solve RPM problems 
using artificial intelligence (AI) algorithms [10]. A digital 
dataset “RAVEN” was proposed for AI algorithms and then 
became a benchmark problem for abstract spatiotemporal 
reasoning [15]. Seven configurations (Center, 2*2 Grid, 
3*3 Grid, Left–Right, Up-Down, Out-InCenter, and Out-
InGrid; see Figs. 4 or 5 in [15]) of 3 × 3 matrix problems 
that have similar progressions in RPM were automatically 
generated by the algorithm in the RAVEN dataset; objects 
were arranged differently according to the configurations. AI 
algorithms must identify the rules in the rows of the matrices 
and complete the 9th cell of the matrices in all configurations 
[15]. The subsequent “I-Raven” and “Raven-FAIR” datasets 
improved the algorithm’s ability to generate false candidates 
for the missing panel in the RAVEN dataset [16, 17].

AI algorithms can even surpass human performance with 
adequate training on these datasets (see Tables 1 and 2) [10, 
18]. Based on the supervised learning method, the Rel-base 
and Rel-air models used convolutional neural networks 
(CNNs) to identify the attributes of matrices and to find the 
relationships between panels [19]. The SCL used scattering 

transformation in shared attribute and relation modules to 
acquire attributes and rules [20]. The MRNet used a multi-
scale feature extraction module and a relational network to 
determine the relevance between different panels in differ-
ent rows [17]. The PrAE model used neural networks and a 
symbolic reasoning backend to identify visual features and 
find the most plausible attribute values [21]. The ALANS 
learner, which is another type of neurosymbolic model, used 
algebraic methods to represent the relationships of attributes 
extracted from encoders [22].

Although the latest AI algorithms can surpass human 
performance, little effort has been made to build a model 
that solves RPM problems in a human-like hierarchical man-
ner, translating the physical attributes of RPM into semantic 
conceptual features and inferring the latent rules governing 
the modification of matrices using cognitive maps or mental 
models. In this study, we developed a model to solve RPM 
problems in a human-like manner. The proposed model 
showed clear progress in describing how and why answers 
are generated and predicted what the answer image looks 
like for the missing cell with no candidate answers, as pre-
dicted by Gestalt psychology [23]. The proposed model may 
report incorrect answers, but errors can be human-like and 
semantically understandable.

Related Works

Psychological Model for Solving RPM Problems

Psychologists have developed models to describe the psy-
chological stages and cognitive skills involved in the RPM 
problem-solving process. In one psychology-based model, 
five psychological steps were required to solve RPM prob-
lems. Hierarchical perception (the first step) determined 
which parts to consider as a whole and perceived each seg-
ment separately (i.e., as edges and as a whole). In the second 
step, the model compared and found consistencies and dif-
ferences in different hierarchies across panels. If the com-
parison failed, the model reorganized the perception in the 
first step. In the remaining three steps, the model reasoned 
about the critical consistencies and differences to find the 
answers [11]. Psychology-based models were less complex 
but more semantically explicable than performance-based 
AI algorithms.

Variational Autoencoders

Autoencoders (AEs) are neural networks that consist of 
three parts: encoder, bottleneck, and decoder [24, 25]. The 
encoder part takes the input data and compresses the data 
into a low-dimensional latent space represented by the bot-
tleneck, and then, the decoder recovers the data from the 
compressed latent representation. Variational AE (VAE) has 

Table 1  Average accuracy of different algorithms

a An asterisk (*) indicates that we tested the model by us; other unmarked 
values were taken from the literature

Methods RAVEN I-RAVEN RAVEN-fair Acc

PrAE [21] 65.0 77.0 88.3* 76.8
ALANS [22] 79.6 65.4 - 72.5
Rel-base [19] 91.7 92.1* 92.8* 92.2
MRNet [17] 96.6 85.1* 88.4 90.0
SCL [20] 91.6 95 91.7* 92.8
SRAN [16] 55.7* 60.8 71.3* 62.6
sVAE-CMRB 97.7 98.2 98.8 98.2
designed CM 97.7 98.1 98.9 98.2

Table 2  Average accuracy 
of VAE-related methods on 
RAVEN

a C0 was tested on RAVEN-fair

VAE methods I-RAVEN(a)

LoGe [27] 62.9
C0 [29] 60.8a

Ours 98.2
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the same structure as AE but views the recovery process as 
an inference problem. With regularized latent dimensions, 
VAE can generate new data points [26]. VAE has been used 
to solve Raven-related problems for feature disentanglement 
[27, 28] and answer image generation [27, 29] or Gestalt 
image completion [23]. Answer generation without candi-
dates is more complex and human-like than other AI algo-
rithms. Although VAE algorithms can sometimes generate 
reasonable answers and images, overall performance has not 
been good [23, 27, 29].

The hyperparameter β was introduced in β-VAE to bal-
ance the reconstruction and regularization losses [30], which 
enhanced the disentanglement of the latent variables and 
improved the performance. Although β-VAE was efficient 
for data disentanglement, we do not know the semantic 
meaning of the latent dimensions produced by β-VAE, the 
conceptual features they encode, or how the latent dimen-
sion affects image regeneration. In this paper, we introduce 
a semantic version of VAE (sVAE) that can decompose fig-
ures into semantic dimensions through supervised learning 
(see Fig. 2). sVAE can generate learned images and novel 
images according to semantic descriptions by changing the 
semantic features in the bottleneck (morphing images).

Cognitive Maps

Tolman first proposed cognitive maps as a systematic organ-
ization of knowledge that spans all domains of behavior 
[1]. Later, the hippocampus was recognized as the neural 
substrate of cognitive maps [3]. Computationally, cognitive 
maps represent generalizable action transitions between dif-
ferent state spaces that can be modeled by reinforcement 
learning algorithms such as successor representation [31, 
32], linearly solvable Markov decision processes [33], cog-
nitive graph models such as the clone-structured cognitive 
graph model (CSCG) [34], and neural-inspired grid cell 
models that perform path integration [1, 2]. Recently, a uni-
fied framework called the Tolman-Eichenbaum machine 
provided a model that shows the role of the hippocampus 
in spatial and nonspatial generalization and the principles 
underlying many entorhinal and hippocampal cell types 
[4]. The cognitive maps proposed by Whittington were 
independent of specific locations and could be generalized 
across different maps. When entering a new environment, 
the encoding of spatial knowledge by grid cells binds with 
the encoding of places by place cells to form a complete cog-
nitive map from which we can infer the relationship between 
any two nodes in the map. This process can be generalized to 
nonspatially structured relationships such as family trees [4]. 
RPM problems contain similar general “feature maps” that 
can be generalized across different RPM problems. Humans 
can abstract these feature maps to form cognitive maps and 
use them to reason across contexts.

Purpose of This Study

We build a high-performance model with human-like per-
ceptual and reasoning capabilities by incorporating percep-
tual and semantic reasoning technologies VAE and cogni-
tive maps to mimic human behavioral reasoning pipelines 
involving hierarchical perception, comparison, and critical 
difference finding, as in psychological studies [11], and to 
realize human neural mechanisms of factorization (disen-
tanglement) and cognitive map building. First, the model 
can generate human-like object perceptions and percep-
tual expectations by disentangling objects into conceptual 
semantic latent dimensions and generating integrated rep-
resentations and expectations for objects beyond the enu-
meration of its part. Second, the model can reason abstractly 
at the conceptual or semantic level rather than at the pixel 
level. Third, the model can respond accurately by predicting 
the attributes of the missing field and generating the possible 
image of the answer without the candidates for the missing 
field of the matrices.

Methods: the Neuro‑symbolic sVAE‑ 
CMRB Model

Model Overview

Experiments were performed on NVIDIA GeForce GPU 
platforms (driver version, 510.39.01; CUDA version, 11.6; 
or driver version, 460.80; CUDA version, 11.2) and a CPU 
(Windows 10 64-bit Intel(R) Core(TM) i7-8700 CPU @ 
3.20 GHz (12 CPUs)). The proposed model (see Fig. 1) 
solved the problems in two human-like stages. In the first 
stage, hierarchical perception extracted the structural organi-
zation of the problem, the features of each panel, and the 
attributes of the objects in each panel. In the second stage, 
the model learned the rules governing the progression of 
the matrix and realized abstract reasoning. In the test con-
dition (second stage), the model applied the learned rules 
to generate answer images with predictions or to compare 
attribute predictions with selections. The model consists of 
three modules, each of which is shown below.

Structural Organization Perception FCNN‑Network

Hierarchical perception is a coarse-to-fine perceptual pro-
cess in psychology. The configuration or arrangement of the 
items of RAVEN problem is the global or coarse informa-
tion, which often be processed at first in our brain accord-
ing to global first theory by Lin Chen [35]. In the model, 
FCNN is the first perceptual level and simplifies by assum-
ing that human’s perception at this level is determined by the 
type of problem, implying that the same type of problem is 
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perceived roughly in the same way. A convolutional neural 
network with four layers (16, 32, 64, 128 latent dimensions, 
kernel size 5 * 5, step 1, padding 1) and a feedforward layer 
(16384 nodes) was jointly trained (FCNN) to recognize the 
type of RPM problem. This structural organization informa-
tion was critical because the framework of semantic descrip-
tion and cognitive maps was different for different problem 
types. The FCNN network took the image of the first panel 
(size: 160 * 160) of the problem as input and output one-hot 
encoded structural organizations corresponding to one of 
the seven types of RPM problems (Center, 0; 2*2 grid, 1; 

3*3 grid, 2; Left–Right, 3; Up-Down, 4; Out-InCenter, 5; 
and OutInGrid, 6). We used 959 problems per configuration 
to train the FCNN module (cross-validation). The FCNN 
learned quickly, reaching 100% accuracy after seeing 959 
* 7(= 6713) problems in 50 training epochs. According to 
the resulting structural organization of the RPM problem, 
the image of each panel can be segmented into individual 
objects whose semantic features can be extracted by the 
sVAE framework described in the following subsection. 
The structural organization information also determined 
the maximum number of object-level features to consider in 

Fig. 1  Overview of the proposed model framework. Training con-
dition (top): Given an RPM problem, the FCNN first processes the 
eight problem panels and the answer panel; recognizes the structural 
organization of the problem; extracts object position information (in 
gray); and segments the image into objects (in blue). The sVAE then 
processes the object segments and disentangles them into semantic 
features. CMRB analyzes position information (in gray) and seman-
tic features at the panel or object level (including type (in blue), color 
(in yellow), size (in green), and angle (in purple) information) for the 
eight problem panels and the answer panel, abstracts relationships, 

generates predictions, and learns cognitive maps. The supervisions are 
applied to the model as indicated. Testing condition (bottom): In the 
test condition, without providing the answer panels to the model, the 
trained FCNN and sVAE modules extract detailed semantic features 
of objects and positions in the first eight panels, and the CMRB pre-
dicts features in the missing panels. sVAE further constructs possible 
answer images based on these predictions. To make a selection, FCNN 
and sVAE process panels 8–16. CMRB compares the semantic fea-
tures of panels 8–16 with the generated predictions and selects the best 
matching panel as the answer. The outputs are circled in red squares
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a problem in CMRB (different configurations had different 
numbers of objects).

Semantic VAE Feature Extraction Module

The encoder of sVAE sampled the data (X) and generated 
a joint distribution of X and its latent variables Z1. Z1 was 
input to the feature encoder to produce human understandable 
semantic features (f) of the sample data (X). The latter was 
further input to the decoder of the semantic feature layer to 
produce a new set of latent variables Z2 and the decoder recon-
structs X from Z2. The reconstruction loss is the difference 
between the data X and the reconstructed X. VAE assumes that 
Z follows a given distribution. Any violation of this distribu-
tion leads to a regularization loss. The relative weight between 
the regularization loss and the reconstruction loss is modulated 
by the hyperparameter β in β-VAE [30]. The β-VAE is efficient 
at disentangling data, but the latent variables in the β-VAE 
had no explicit semantic or conceptual meanings for the input 
data; thus, it was difficult for us to understand the reason-
ing process of the model. To overcome this shortcoming, we 
introduced semantic feature layers into VAE, i.e., projected 
the latent variables (Z1) onto a feature encoder and then onto a 
semantic feature layer (f) whose activity is semantically under-
standable in human-defined dimensions (i.e., successively 
one-hot encoded shape (five dimensions), color (ten dimen-
sions), size (six dimensions), and angle (eight dimensions)). 
The 29 semantic nodes in the semantic layer correspond to the 
29 human-defined dimensions listed above, and the activation 
of each node represents how well the input image fits within 
that dimension. Taking a node as an example, if the image 
being semantically analyzed fits precisely into that dimension, 
the activation of that node converges to 1. If it does not, it 

converges to 0. The supervision to the semantic layer is the 
same as the one-hot encoded label of the input data obtained 
from the corresponding problem XML file (see Appendix 3 
for a more detailed description). The semantic feature layer 
was then projected onto feature decoder layer and then onto 
another latent variable (Z2) similar to Z1. With this modifica-
tion, the model’s decoder continued to use the latent variable 
(Z2) to reconstruct the input image as a β-VAE (see Fig. 2). 
Therefore, the loss of the sVAE model can be decomposed into 
four parts: the object reconstruction loss, the latent variable 
reconstruction loss, the supervised loss (difference between 
the semantic features and the labels), and the regularization 
loss (divergence between the distribution of the latent variables 
and the assumed distribution), as in Eq. 1:

where β is the weight of the regularization loss relative to 
other losses. In the proposed model, β was set to 10, as in 
other typical β-VAE models. ϕ, θ, α, and γ were the param-
eters for the encoder (4-layer CNN encoder with 40, 64, 128, 
and 256 latent dimensions; a kernel size of 3 * 3; a stride of 
2; and a padding of 1), the decoder (4-layer transpose CNN 
with 256, 128, 64, and 40 latent dimensions; a kernel size 
of 3 * 3; a stride of 2; a padding of 1; and an outpadding of 
1), the feature encoder (4096 hidden units), and the feature 
decoder (4096 hidden units), respectively. We adjusted the 
hyperparameters to minimize the loss. Smooth l1 means 
smooth l1 loss, as in Eq. 2:

(1)
L = Eq�(z1|x)[log p�(x|z2)] + Eg�(f |z1)[log h� (z2|f )]

+ Smooth l1(f , labels) − � × DKL(q�(z1|x)|p(z1))

(2)l1 =

�∑n

i=0
0.5 × (yi − f

�
xi
�
)
2
, �yi − f

�
xi
�
� < 1∑n

i=0
�yi − f

�
xi
�
� − 0.5, othervise

Fig. 2  Schematic of the semantic 
VAE module. Each bar represents 
the output of one layer of the 
algorithm. The encoder of sVAE 
(4 layers) decomposes the images 
of objects into low-dimensional 
latent features (z1). The latent 
features (z1) are fully connected 
to the semantic layer (f). The 
semantic feature layer (f) has 
29 dimensions, representing 
the semantic features of objects 
(5 types, 10 colors, 6 sizes, 8 
angles). The semantic feature 
layer fully projects onto latent fea-
tures (z2). The decoder (4 layers) 
regenerates the image according 
to the latent features (z2)
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We used 500 problems per configuration to train the 
sVAE model (approximately 375 problems for training 
and 125 problems for validation; different VAEs for dif-
ferent configurations because the labels did not match 
across configurations). The sVAE model achieved 100% 
accuracy in predicting the labels within 10 epochs of 
training. sVAE can generate accurate images within 100 
epochs of training. Panel features and individual object 
features were extracted from the semantic features after 
the semantic features of the objects were extracted. The 
panel feature was the collection of attributes of all objects 
in the panel. Feature of one attribute took a single value 
if the attribute values were the same for all objects in 
the panel or took a sorted (low to high) enumeration of 
the attribute values if the panel contained objects with 
different attribute values. The individual object feature 
listed all objects and their attribute values in the panel. 
If the second and third panels contained objects of the 
same type as the first panel, the order in which the objects 
were listed in these latter panels followed the order of 
their most similar same-type objects in the first panel. 
We used the individual object feature to describe how 
the attributes of an object changed in a row because the 
first object listed in the second and third panels in a row 
corresponded to the object in the first panel. This process 
mimicked the hierarchical processing of humans, who 
perceive at different levels and compare at different scales 
[11]. The panel feature and the individual object feature 
were the inputs to the cognitive map reasoning back-end.

The semantic feature layer in sVAE provided a semantic 
description of objects, and the decoder generated objects 
with variations in semantic features. The semantic concepts 
perceived by sVAE led to more efficient training with less 
data because they were semantically generalizable, similar 
to humans. The model did not need to see all objects to rea-
son, using images of 1440 objects to learn 2400 objects (see 
“Result” and “Discussion” for details).

Cognitive Map Reasoning Back‑end

A cognitive map, or mental model, is a type of mental 
representation or structured knowledge stored in long-term 
memory (LTM). Human use cognitive maps to acquire, 
encode, store, retrieve, decode, and infer the features of 
spatial locations (or nonspatial abstract locations). Cog-
nitive maps are formed through experience. When peo-
ple encounter a new situation without prior knowledge 
(cognitive maps), they experience links and relationships 
between all members of the scene. Some of these con-
nections are crucial, while others are trivial. Success in 

similar situations depends on the critical links. With feed-
back and contrasts from other scenes, people gradually 
learn to focus only on the critical connections in similar 
situations. The neural representations of these critical 
links thus form cognitive maps and can be activated by 
similarly structured cues [4, 36] for similar situations. The 
cognitive map reasoning back-end (CMRB) used a similar 
logic to generate the cognitive maps for RPM problems by 
experiencing RPM problems in the training set according 
to the following steps (see Algorithm 1).

Step 1: Given the first RPM problem in the training 
set, the semantic features for the first eight panels and 
the answer panel of the problem were extracted by the 
sVAE module, resulting in a 1 × 9 vector for each attribute 
(type, size, color, and position). A numerical relationship 
(i.e., the difference between two values or whether the 
first plus the second equals the third) can be calculated 
between any two or three of these nine elements in the vec-
tor. In other words, if the value of the  ath element is greater 
than that of the  bth element by one, then the relationship 
between the two elements is “ + 1”; otherwise, it can be 
“0” or “ − 2.” If there are three elements  (ath,  bth, and  cth), 
the types of the relations can be expressed as “a + b = c,” 
with each expression corresponding to a specific relation 
type. The cognitive map module assigns the relationship 
between the  ath,  bth, and  cth elements as “1,” for example, 
if a, b, c follows “a + b = c” and the relation type number 
of “a + b = c” is “1.” The numerical relationships or rela-
tionship types can be determined for every two or three 
elements a ∈ (1,9), b ∈ (1,9; b ≠ a), and c ∈ (1,9; c ≠ b ≠ a 
in three elements case). All two-two and three-three rela-
tions combine to make a 9 × 9 matrix or 9 × 9 × 9 tensor. 
Figure 3 and Appendix 3 section “Cognitive Map Train-
ing Details” provide more detailed descriptions. When 
the problem contained 2 × 2 or 3 × 3 grids, the position 
information of these grids formed separate position feature 
maps, resulting in three types of feature maps (i.e., attrib-
ute, 2 × 2 position, and 3 × 3 position feature maps). The 
feature map was symmetric; thus, only the lower triangle 
in the feature map must be considered. The feature maps 
and the RPM problem that generated the maps were stored 
in LTM, which has a capacity of 30.

Step 2: Given a second RPM problem in the training 
set, 9 × 9 matrix (or 9 × 9 × 9 tensor) feature maps  CMnew 
can be computed. We compute the  8th-order principal sub-
matrices (subtenors) of  CMnew, denoted  CMnew,cue, as the 
feature maps of the problem without the answer panel, and 
define the similarity between two maps as the number of 
elements in the feature map  CMnew,cue that are equal to the 
corresponding elements in  CMold,cue.
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Step 2.1.1: If the similarity between  CMnew,cue and all 
 CMold,cue in LTM was less than the similarity threshold L0 
(L1), the feature maps  CMnew were novel for CMRB (see 
Appendix Tables 7, 8, and 9 for the choice of L0 and L1).

Step 2.1.2: If the number of feature maps reached the 
capacity of the LTM,  CMnew and the problem replaced the 
least active feature map and its associated problem. Other-
wise,  CMnew and the problem were saved directly to the LTM.

Fig. 3  Schematics of the cognitive maps. Left: The algorithm forms a 
feature map for an RPM problem with size attributes 1,2,3,2,3,1,3,1,2 
(panels 1–9; panel 9 is the answer panel). As described in the text, the 
feature map (orange and pink tables in the figure) is a 9 × 9 matrix. 
The (a,b) position in the feature map represents the numerical rela-
tionship of the size attribute between panels a and b. (“ = ” means 
equal, “ + 1” means the size of panel a is greater than panel b by 

1). Middle: The algorithm encounters a similar instance (similarity 
score > L0), creates a temporal cognitive map (keeping only the effec-
tive elements of the old cognitive map that have the same value as the 
feature map of the new problem), and solves the problem using the 
temporal map. Right: After multiple activations and updates, the final 
cognitive map describes the “Distribute Three Left” relation

←

Algorithm 1 Acquire and apply cognitive maps

Require: feature vector d = x1, x2…x9//The attribute values of the first 8 panels and answer panel.

Ensure: CM index, p/ / The cognitive map index and the attribute prediction

1: for d in training set do/ / Enumerate feature vectors of training problems

2: CMnew,9×9, CMnew,9×9×9←generate relationmap(d)

3: if id > 2 then//Later than the second problem

4: CMcue,8×8 CMnew,9×9[: 8, : 8]

5: CMcue,8×8×8 ← CMnew,9×9×9[: 8, : 8, : 8]/ / Construct cues

6: for CMold in LTM do
7: L2 ← compare(CMcue,8×8, CMold,9×9)

8: L3 compare(CMcue,8×8×8, CMold,9×9×9)//Compute similarity

9: if L2 > L0 or L3 > L1 then//Activate similar cognitive maps

10: CMtemp ← same(CMnew, CMold)//Find same relationships

11: s1, p ← solve(CMtemp, d[0 : 8])/ / Solve the new problem

12: s2, p ← solve(CMtemp, d old[0 : 8])/ / Solve the old problem

13: if s1 == 1 and s2 == 1 then
14: update(CMold, CMtemp)/ / Update the cognitive map

15: count(1)+ = 1//Count the frequency of use

16: break/ / Break loop

17: end if
18: end if
19: end for
20: end if
21: if s1 == 0 and s2 == 0 then
22: save(CMold,9×9[argmin(count)], CMtemp,9×9)//save or replace

23: save(CMold,9×9×9[argmin(count 1)], CMtemp,9×9×9)

24: end if
25: end for
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Step 2.2: If the similarity between  CMold,cue and  CMnew,cue 
was greater than the similarity threshold L0 (L1), a similar old 
feature map  CMold was activated. Then, a temporal feature 

map  CMtemp was created in memory. The elements in  CMtemp 
were set to the value of the corresponding elements in  CMold 
if an element in  CMnew was the same as the corresponding 

Fig. 4  Example of generated objects. sVAE can generate objects with 
semantic descriptions (latent semantic dimensions) by assigning values 
to the semantic features type, color, size, and angle. This figure shows 

five types of objects (top) with ten colors (bottom left), six sizes (bot-
tom center), and eight angles (bottom right) generated by sVAE

Fig. 5  Sample answer image 
generated by sVAE. One prob-
lem for each configuration (as 
labeled) is shown. The left side 
of each configuration shows 
the problem, and the right 
side shows the answer image 
provided by RPM dataset (left) 
and the answer image generated 
by model (right)
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element in  CMold (and to zero if not).  CMtemp encoded the 
collective cognitive map memory in  CMnew and  CMold.

Step 2.2.1: Predict the values of the attributes of the 
objects in the missing panel of the new problem and the 
 CMold-related problem stored in LTM using the nonzero 
elements in the 9th row of  CMtemp. If more than half of the 
predictions were correct,  CMold in LTM was updated by 
 CMtemp. We examined the next problem in the training set.

Step 2.2.2: If more than half of the predictions were 
wrong for all  CMtemps, which were created by  CMolds in 
LTM,  CMnew was new to CMRB.  CMnew and the problem 
were saved to the LTM or as a replacement for the least 
active feature maps and problems, depending on the number 
of feature maps in the LTM. We examined the next problem 
in the training set.

Step 3: When all the problems in the training set had been 
examined, the CMRB completed the acquisition of cognitive 
maps of the RPM problems and stored the maps in the LTM.

The CMRB can then apply the cognitive maps to solve 
RPM problems. Given an RPM problem in the test set, the 
sVAE module extracts the semantic features of the first eight 
panels of the problem. CMRB then computes the similarity 
between  CMcue and the feature maps in LTM. The feature maps 
 CMpre in LTM that fully match  CMcue can predict the attributes 
of the missing panel using the elements of the 9th row of the 
maps. The sVAE module then generated the image of the miss-
ing panel using the predicted values of the attributes.

The mechanism of the CMRB module is specified in 
Algorithm 1, and the functions in the algorithm are concep-
tually generalizable. The Compare function took two cogni-
tive maps (matrices) as input and output similarity scores 
(number of identical elements, as in step 2). The same func-
tion created  CMtemp with  CMold and  CMnew as in step 2.2. 
The Solve function took a cognitive map and an incomplete 
feature vector (the features of the first eight problem panels) 
as input and applied transitions in the cognitive map, which 

are defined as a 9 × 9 matrix or 9 × 9 × 9 tensor, as shown in 
Fig. 3, to solve the missing features. The Update function 
updates  CMold with  CMtemp. The Save function saved the 
learned  CMtemp to long-term memory or as a replacement 
for the least active feature maps.

Result

We evaluated the performance of the neuro-symbolic sVAE-
CMRB model on the RAVEN, I-RAVEN, and RAVEN-fair 
datasets (see Appendices for details), compared its perfor-
mance with other baseline models, and analyzed its errors. 
Additional results are provided to illustrate the interpret-
ability and generalizability of the model.

Baselines

First, we compared the performance of the proposed model 
with (1) the neuro-symbolic models PrAE and ALANS; (2) 
the best-performing algorithms Rel-air, MRNet, SCL, and 
SRAN; and (3) the VAE-based methods LoGe (VQ-VAE) 
and C0 (VAE). For comparison purposes, in most cases, 
we used the performance published in the literature. How-
ever, many models were not tested on all three datasets; 
thus, we enriched the results of some models by performing 

Fig. 6  The extrapolation 
models (left) trained on partial 
data of the training set without 
squares of color 5-10 (top) or 
circles of size 4-6 (bottom) pro-
duce similar images compared 
to the full model (right) trained 
on all data of the training set. 
The numbers above and below 
the images indicate the values 
of the color and size attributes, 
respectively. Details produced 
by the full model are better (see 
zoomed images in the middle 
row of the figure)

Table 3  Extrapolation performance of sVAE on untrained objects, all 
objects, and RPM problems

Models Untrained 
dimensions

Perception 
accuracy

RAVEN accuracy

Extrapolation 0.9781 0.9957 0.977
Extrapolation
 + 240 images

1 1 0.989

Full training 1 1 0.989
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experiments with open codes on the datasets not tested by 
the authors, as indicated by asterisks in Table 1. Second, 
we compared the performance of the proposed sVAE model 
with the traditional β-VAE model and the performance of 
the CMRB with manually designed cognitive maps (see 
“Result” and Appendices). Finally, we compared the per-
formance of the proposed model with perfect performance 
as a baseline to show where it went wrong.

Result for the Semantic‑VAE Module

The sVAE module achieved interpretability by generating 
accurate, fully disentangled semantic interpretations for all 
items and by generating accurate figure representations for 
all semantic descriptions. The model performed better at dis-
entangling and generating objects than the baseline β-VAE 
model (figure reconstruction error: 0.00077 vs. 0.00252; 
disentanglement score: 1.000 vs. 0.961). Perceptual accu-
racy in generating semantic interpretations was 1.0 for all 
configurations except the O-IG (out-in-grid) configuration, 
whose accuracy was 0.99. sVAE generated clear and mean-
ingful objects (Fig. 4) and answer images (Fig. 5) with the 
semantic description generated by CMRB.

Its generalizability was evident in regard to generating 
semantic interpretations (for objects) or figures (for descrip-
tions) for similar but unlearned items. We conducted an 
extrapolation experiment to determine whether the algorithm 
can understand and generalize Raven’s key semantic dimen-
sions. Size, color, and type are three semantic dimensions 
in the Raven context that are crucial to defining laws and 
relationships. In particular, the semantical understanding of 
size and color can be transferred from one type of object 
to another. In the extrapolation experiment, we excluded all 
squares with colors 5–10 (or circles with sizes 4–6) from the 
training set containing images of objects from the 500 RPM 
problems. After training with this ablated training set, the 

model never saw any squares with colors 5–10 (or circles 
with sizes 4–6) but could accurately predict the semantic 
color features (5–10) of the squares (or size features (4–6) of 
the circles) and could generate accurate images for squares 
with colors 5–10 (or circles with sizes 4–6; Fig. 6), sug-
gesting that the sVAE did not simply complete the task by 
memorizing the learned items but rather “understood” the 
semantic dimensions of color and size beyond the scenes it 
had acquired (object types) to new scenes (squares or circles). 
This process follows the definition of semantic knowledge 
[37], and this organic understanding is generalizable to simi-
lar untrained objects. We fed 240 images of untrained objects 
(one image per object) to further train the extrapolationally 
trained sVAE. After training, the performance of the further 
trained sVAE was equal to the performance of the originally 
trained sVAE on 500 problems (Table 3).

Results for the Cognitive Map Module

CMRB is the first reasoning backend that provides inter-
pretable, transparent descriptions of the strategies induced 
by CMRB in the form of cognitive maps. Figure 7 shows 
4 typical learned cognitive maps (misleading cognitive 
maps lead to interpretable errors, see the “Mistakes” sec-
tion). The cognitive maps implied reasoning that could be 
transferred to any other problem with similar reasoning, 
regardless of apparent differences at the pixel or attribute 
level. These maps were compatible to new logics, where 
these problems were easily recognized as novel and new 
cognitive maps were formed. CMRB learned the cognitive 
maps and achieved high accuracy in predicting the attrib-
utes of the missing matrices. The resulting performance 
was comparable to the baseline of hand-designed cognitive 
maps (Table 1). The prediction accuracy and the number of 
learned cognitive maps varied with the similarity threshold 
L0 (see Appendices for training and parameter details).

Fig. 7  Four typical cognitive 
maps learned by CMRB. Each 
map represents a progressive 
relationship. The nine squares in 
a map represent the nine panels 
of the RPM, and the annotated 
arrows indicate the numeri-
cal relationship between the 
features of different panels at 
the panel or object level

Table 4  Average accuracy for 7 
configurations in the RAVEN, 
I-RAVEN, and RAVEN-fair 
datasets

Config/datasets Center 2*2 3*3 O-IC O-IG L-R U-D Average

RAVEN 0.992 0.9879 0.9931 0.9945 0.876 0.9963 0.9968 0.9767
I-RAVEN 0.9944 0.9742 0.9945 0.9968 0.9147 0.9987 0.9982 0.9816
RAVEN-fair 0.9932 0.9921 0.9954 0.9958 0.9436 0.9975 0.9979 0.9879
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Primary Results

The model performed well on all three datasets, achieving 
good performance in all configurations (Table 4). The pro-
posed model produced the highest overall accuracy among the 
baseline competitors (Tables 1 and 2; 97.7% on the RAVEN 
dataset, 98.2% on I-RAVEN, and 98.8% on RAVEN-fair).

Mistakes

The algorithms rarely made mistakes. Perception was nearly 
perfect unless the image was too small (e.g., in the O-IG 
configuration). The accumulation of perceptual errors 
caused a decrease in accuracy in O-IG cases. The cognitive 
reasoning backend was accurate and powerful, solving 98% 
of the problems. Occasionally, CMRB recognized some rela-
tionships that were not considered by the RAVEN dataset. 
For example, CMRB might take a shortcut (e.g., the attrib-
ute of the 8th panel equals that of the 2nd panel) that was 
not definitive, ignore critical information in the graph, use 
unstable column information to make judgments, or make a 
false generalization between unrelated problems (see Fig. 8). 
These unrecognized relationships captured by these biased 
cognitive maps can lead to incorrect predictions. However, 

humans can make similar errors, particularly when they 
are less familiar with the premise of RPMs. Errors were 
reduced with training, particularly after we introduced for-
getting (deleting cognitive maps not used for a long time) 
and prioritized cognitive maps that solved more problems.

Discussion

Inspired by how human solve RPM problems, we used the 
sVAE-CMRB model to solve RPM problems in an interpret-
able and human-like way. The sVAE operated in a neural net-
work, while the CMRB operated in a symbolic manner. The 
model perceived RPM problems in a hierarchical, human-like 
manner and performed human-like symbolic reasoning, pro-
duced understandable intermediate results, and solved RPM 
problems in a blank-filling manner with high accuracy.

Models' Innovations

Many machine learning models used sophisticatedly 
designed modules to increase contrast [20], enable shared 
rule processing [22], or develop higher level convolutions 

Fig. 8  Four examples of cognitive maps, as in Fig. 7, that are generated 
by the CMRB and that lead to incorrect predictions. The first map relies 
on a false short-cut relationship between panels 1 and 8. The second 
map ignores critical information from the first three panels. The third 

map uses column wise relationships that are not defined in the RAVEN 
datasets. The fourth map shows a special case of far-fetched generaliza-
tions between two unrelated problems. In this case, knowledge from one 
problem should not be transferred to the other

Fig. 9  3D chair generation. The 
sVAE model learns to describe 
chairs in terms of the under-
standable semantic features of 
type (top row), size (Axis 1), 
height (Axis 2), width (Axis 3), 
position (Axis 4), color (Axis 
5), and angle (Axis 6) and 
generates clear and meaningful 
images with one-hot encod-
ings of the semantic features as 
its latent semantic units. The 
model can use these axes to 
apply transfigurations or create 
chair images

3D Chairs

type1 type2 type3 type4 type5 type6 type7 type8 type9 type10 type11 type12 type13 type14 type15

axis1
axis2

axis3
axis4

axis5
axis6
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[21]. However, these models tend to perceive objects dif-
ferently in nonsemantic dimensions and rely on statistical 
correlations at the pixel or representation level to solve 
RPMs. In 2022, Ma et al. proposed “parsimony” as a general 
principle for how we should build machine learning algo-
rithms [38]. The principle encouraged machines to abstract 
parsimonious latent dimensions among mass data and build 
representations on top of them. In this study, we exploited 
the priority of the human brain and put efforts into building 
a model that can abstract perceptual dimensions or rules, 
“perceive” objects, and “communicate” or “generalize” 
strategies in a human-like way, suggesting a possible way to 
realize human-like intelligent abstract reasoning. Consider-
ing that the human brain has evolved so many years and is 
sophistical to many challenging problems, we think this kind 
of brain-inspired model can achieve great success in many 
specific hard problems in the future.

The sVAE was shown to be a good successor to VAE. 
With simple supervised constraints, the model performed 
fine disentanglement and produced clearer images than 
other VAE-based algorithms on the same datasets [27, 
29]. Compared to the β-VAE model [30], the sVAE mod-
ule had semantic latent features that improved the model’s 
explicability while enhancing its generalization (shown in 
Appendix Fig. 9). The model’s generalizability led to more 

efficient training and was sufficient to achieve high percep-
tual accuracy and to solve 90% of the problems with a small 
training dataset (only 1440 object images). The reported 
model achieved high performance within 300 problems (see 
Appendix Table 7), and results suggest that we have made 
significant progress in variational autoencoders.

Cognitive maps describe people’s mental models of 
how to solve RPM problems [1, 4] and contain concep-
tual rules that can bind with specific problems. Due to 
the abstract nature of cognitive maps, reasoning with cog-
nitive maps was different from reasoning with specific 
rules and did not enumerate all possible rules to solve 
a problem [21]. Rather, this reasoning applied a general 
rule to a specific attribute value, which is similar to the 
human problem-solving process. To our knowledge, the 
proposed model is the first to apply cognitive maps to 
the RAVEN, iRAVEN, and RAVEN fair datasets. CMRB 
achieved high accuracy. As insights for machine learning 
intelligence, we believe that cognitive maps are essential 
for achieving human-like abstraction and generalization. 
The machine learning community should apply the cog-
nitive map to solve reasoning or inference problems. A 
large-scale application of cognitive maps is likely to result 
in generalization and other intelligent behaviors, which 
suggests a possible direction for abstract reasoning in the 
future (see “Model Innovations” section).

Table 5  Figure reconstruction errors of sVAE and β-VAE on five datasets

Model RAVEN 3DChairs 3DFace celebA lfw

sVAE 0.00077 0.00933 0.00274 0.01467 0.01408
β-VAE 0.00252 0.00755 0.09461 0.02078 0.11825

Table 6  Disentanglement scores 
of sVAE and β-VAE on the 
RAVEN and 3D Chair datasets

Model RAVEN 3DChairs

sVAE 1 1
β-VAE 0.961 0.969

Fig. 10  sVAE describes 3D faces with semantically identifiable dimen-
sions of shape, appearance [52, 53], and labels. sVAE also produces 
higher-quality figures compared to β-VAE. a Face images (top) and sVAE 
reconstructions (bottom). b Face images (top) and β-VAE reconstruc-
tions (bottom). c Shape and appearance dimensions learned by sVAE. An 

“average face” (first column) is constructed by setting the semantic units 
to the mean of 5000 random faces. For the remaining columns, we mod-
ify the “average face” by adding 3 standard deviations to one dimension 
(dim0 to dim8). d Latent dimensions learned by β-VAE (as in c). e sVAE 
can generate faces from different angles with one angle as input



Cognitive Computation 

1 3

Generalization

The proposed model can be easily generalized to real-
world situations that require abstract visual reasoning. We 
tested the proposed sVAE model on the 3DChairs dataset 
[39], the 3DFace dataset [40], the celebA dataset [41], 
and the LFW dataset [42] (see Appendix 5 for detailed 
documentation of the generated datasets and labels) with 
the following settings:

• Encoder: five-layer convolutional-neural-network (CNN, ker-
nel size:3) with 32, 64, 128, 256, and 512 hidden dimensions

• Feature encoder: fully connected feed-forward layer with 
16384 nodes

• Semantic feature layer: fully connected feed-forward 
layer with equal or more nodes to label dimensions

• Feature decoder: fully connected feed-forward layer with 
16384 nodes

• Decoder: five-layer transpose CNN (kernel size: 3) with 
512, 256, 128, 64, 32 hidden dimensions).

The sVAE model identified meaningful semantic attrib-
utes in all datasets and outperformed the β-VAE algorithm 
in image reconstruction, disentangling, and semantic 

Fig. 11  sVAE describes realistic face images in the celebA dataset with 
semantically identifiable dimensions of shape, appearance (extracted by 
the active appearance model as in [52, 53]; see Appendix 5 for details), 
and labels. sVAE also produces high-quality images (compared to 
β-VAE). a Face images (top) and sVAE reconstructions (bottom). b 
Face images (top) and β-VAE reconstructions (bottom). c Shape and 
appearance dimensions learned by sVAE. d Latent dimensions learned 

by β-VAE (as in c). (E) sVAE morphs the “average face” image by 
decreasing or increasing the value of a semantic dimension (from -3 
sd to 3 sd, where “sd” is the standard deviation of 5000 faces). Shape 
dimensions primarily change the shape of the face (left), while appear-
ance dimensions primarily change the appearance (e.g., eyes and skin 
color, right). f β-VAE morphs average faces by changing the value of an 
example dimension in d 
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morphing. Tables 5 and 6 show the sVAE and β-VAE algo-
rithms’ reconstruction errors (mean square error between 
reconstructed and original images) and disentanglement 
scores (accuracy with which differences in latent features 
between two images predict changes in defining attrib-
utes [30]) on the datasets. We did not measure disentan-
glement scores on the face datasets because there are no 
defining attributes. Figures 9, 10, 11, 12, 13, 14, and 15 
show how we can use sVAE to semantically construct and 
morph chairs and faces. In these more meaningful settings 
of object and face, the CMRB should be able to infer rela-
tionships between objects or faces, as in the new problems 
we proposed in Fig. 16. This result has real-world implica-
tions for reasoning and suspect portrait generation based 
on eyewitness evidence [43].

In this study, we provided a method to generate the cogni-
tive maps for RPM problems. Compared to traditional cogni-
tive map experiments that generalize in sequential problems 
with spatial relations [2, 34], the proposed model was an 
instantiation of the cognitive map concept at the conceptual 
level, where the generalizable relations can be numerical. 
We have shown that the model can generalize to real-world 
stimuli of objects and faces. We believe that the model can 
be broadly generalized to other circumstances, such as real-
world problems that have a state-space representation with 
certain generalizable types of relations between state-spaces 
of the concerned system [2]. For example, Whittington gen-
eralized cognitive maps to make family tree predictions [4], 
and Son generalized cognitive maps to enable flexible infer-
ence in social networks [5].

An important factor that accounts for the more abstract 
representation and generalization in the cognitive map is 
that it (the grid cell representation) factorizes lower-level 
representations (place cell representations) into upper-level 
eigenvectors [2]. This factorization can be different in con-
ceptual state-spaces. In this study, with the development of 
sVAE, we have enabled a similar factorization in concep-
tual dimensions, factorizing an abstract state (figure) into 
its latent dimensions. Because sVAE can be generalized to 
disentangle more complex real-world stimuli such as faces 
and chairs, the perceptual front end should enable better 
generalization of cognitive maps at the conceptual level in 
realistic visual environments.

Neural Basis of Reasoning in RPM

The proposed model mimics the perception and reasoning 
processes in the human brain. Hierarchical perception takes 
place primarily in brain areas V1–V4 and IT. Visual areas 
rely on feedback projections and experience to segment 
objects from their environment [44]. Categorical coding of 
object segments can be achieved in IT [45]. For reasoning, 
we rely on long-term memory, and structured knowledge can 
take the form of cognitive maps [36]. In the brain, cognitive 
maps reason by jointly activating neurons that encode spa-
tial and other features. This process implicates hippocam-
pal, entorhinal, and frontal neurons [3, 4]. fMRI research 
suggests that frontal and parietal regions, visual working 
memory–related brain areas [46], and the caudate in the 
basal ganglia [47] are more activated when solving RPM.

sVAE labels

attractive bangs black_hair blond_hair brown_Hair gray_hair male mouth_open oval_face wavy_hair

attractive
bangs

black_hair
blond_hai r

brow
n_H

air
gray_hair

m
ale

m
outh_open

oval_face
w
avy_hair

-3sd -1.5sd average +1.5sd +3sd -3sd -1.5sd average +1.5sd +3sd -3sd -1.5sd average +1.5sd +3sd

arched
eyebrows

bushy
eyebrows

heavy
makeup

high
cheekbones

receding
hairline

arched
eyebrow

s

bushy
eyebrow

s
heavy

m
akeup

high
cheekbones

receding
hairline

Fig. 12  CelebA provides additional semantic labels for the face images. 
These labels are used to train the sVAE, along with the computed shape 
and appearance. sVAE learns to describe images with these additional 
labels and morphed images using semantic features derived from the 

labels. Top: Images morphed from the “average face” by setting the value 
of a semantic feature (from additional labels) to + 3sd above the mean. 
Others: Images morphed from the average face by changing the value of 
the semantic labels (from -3 sd to + 3 sd)
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Limitations and Future Work

We have introduced human-understandable features in 
our model, primarily represented by the neurons of the 

bottleneck of sVAE. These features are ad hoc because they 
are trained by and specific to the data in RAVEN problems. 
If we want to apply it to nonraven problems, we need to train 
them using the dataset of the new problem, which implies 

Fig. 13  sVAE produces high-quality figures that morphs the shape 
(top) and appearance (bottom) of sample images (left: sVAE, right: β
-VAE). The annotated dimensions are changed from the disentangled 
value of the figure to the value plus -3 sd to 3 sd to produce morphed 

images. Compared to sVAE, β-VAE morphs images in a more entan-
gled way (e.g., when introducing changes in skin color (bottom)), 
sometimes the gender and shape of the faces also change

Fig. 14  As in the celebA dataset, sVAE represents realistic face images 
in the LFW dataset with semantically identifiable dimensions of shapes, 
appearances [52, 53], and labels and produces high-quality figures 
(compared to �-VAE). a Face images (top) and sVAE reconstructions 

(bottom). b Face images (top) and β-VAE reconstructions (bottom). c 
Shape and appearance dimensions learned by sVAE. d Latent dimen-
sions learned by β-VAE (as in c)
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that we cannot directly apply the model to different sce-
narios. Since sVAE features are ad hoc, we need to be aware 
of the features of the scenario to enable the models to char-
acterize the set semantically. To overcome these limitations, 
we need to incorporate a higher-level perceptual module to 
extract the underlying dimensions, enabling the model to 
learn scene features autonomously.

Our model requires some specific human designs, such 
as the dimensions in the semantic feature layer of sVAE 
and the dimensions of the cognitive map. These designs are 
inspired by the hierarchical processing and semantic percep-
tion of our brain, and how humans acquire and generalize 
their knowledge using cognitive maps to solve problems. 
We ensure that the algorithm accumulated knowledge on its 

own during the learning experience (i.e., semantic knowl-
edge about size and color and cognitive maps that solve the 
RPM problem) and was beyond the design.

The cognitive maps in this paper were conceptual. In the 
future, we need to build more biologically plausible models 
for RPM reasoning. Solving RPM problems in a human-like 
way provides insight into how we solve real-world reasoning 
problems. We must improve the encoding capability of the 
semantic VAE module to manage multiplexed stimuli and 
learn rich cognitive maps to model general reasoning under 
flexible real-world conditions.

The proposed model uses a small amount of metadata to 
train as [48, 49], which is a shortcoming since that the meta-
data is not available in some real-world scenarios. The lack 

Fig. 15  LFW dataset also provides additional semantic labels for face images. These labels are used to train the sVAE along with the computed 
shape and appearance dimensions. sVAE learns these additional labels and morphs images according to the variation of the semantic features

Fig. 16  RPM-like question 
constructed for realistic images 
(left: progression in the size of 
chairs, right: progression in the 
appearance of faces (the depth 
of the eye socket)). As in RPM, 
the algorithms need to abstract 
the rules that govern the matrix 
and complete the missing cell 
(the ninth cell) in a meaning-
ful way. Correct answers are 
marked with red squares

Question 1 Question 2



Cognitive Computation 

1 3

of metadata is a big challenge for many AI algorithms, espe-
cially semantic decoupling AI. Many models have attempted 
to replace metadata with unsupervised approaches, such as 
adversarial training [50] and Monte Carlo estimation [51], 
and have made progress in automatic semantic decoupling. 
The proposed model achieves good performance under simi-
lar objectives by directly using labels and supervision, simi-
lar to the early development of children's concept learning. 
Eventually, we will be able to replace supervision with new 
algorithms based on simpler principles and achieve unsuper-
vised semantic decoupling.

Conclusion

We built a neuro-symbolic model to mimic human cognitive 
processes when solving RPM problems. The sVAE mod-
ule extracted the semantic features of RPM problems in a 
hierarchical manner, while the CMRB inferred the missing 
panel based on the semantic feature using cognitive maps. 
The proposed model achieved good performance on three 
benchmarks datasets (RAVEN, I-RAVEN, and RAVEN-
fair). In the future, more efforts should be devoted to more 
biologically plausible models. We believe that a deeper 
understanding of how structural knowledge is stored and 
retrieved; how perceived dimensionality is organized in the 
brain; and how cognitive maps are represented and formed 
must benefit brain-inspired intelligent algorithms for dif-
ficult and general real-world problems.

Appendix 1. Code

The code for this study is available at https:// github. com/ 
scien tific- lab/ Toward_ Intel ligent_ Seman tic_ Reaso ning_ on_ 
Raven-s_ Progr essive_ Matri ces.

Appendix 2. Datasets, Models, and  
Other Resources

Datasets

We used the RAVEN [15], I-RAVEN [16], and RAVEN-fair 
[17] data generators to generate standard RPM problems.

The RAVEN dataset [15] (https:// github. com/ Welly Zhang/ 
RAVEN) uses a hierarchical generator to generate problems 
with different configurations, rules, and attributes. The data-
set has 7 configurations: Center, 2 × 2Grid, 3 × 3Grid, L-R, 
U-D, O-IC, and O-IG; 4 rules: constant, progression, distrib-
ute three, and arithmetic. The objects in the problems have 6 
attributes: number, position, type, size, color, and orientation. 
The wrong answers are generated by changing one attribute 
of the correct answer, which introduces an answer bias; thus, 
wrong answers indicate the right answer.

The I-RAVEN dataset [16] (https:// github. com/ hushe ng123 45/ 
 SRAN) has the same hierarchical generator and generates wrong 
answers differently. Each wrong answer generated by I-RAVEN 
has a 50% chance of changing one of the attributes of the correct 
answer and differs from the correct answer in more than one 
attribute; thus, no answer bias exists.

The RAVEN-fair dataset [17] (https:// github. com/  
yaniv benny/ RAVEN_ FAIR) also uses the same hierar-
chical generator and uses a different method to gener-
ate wrong answers. The algorithm generates one wrong 
answer at a time. After generating the first wrong answer 
by changing an attribute of the correct image, the algo-
rithm randomly selects one of the generated incorrect 
or correct answers and changes one of the attributes of 
the selected image to generate a new incorrect answer. 
RAVEN-fair also has no answer bias.

β‑VAE Module

The sVAE module was developed from the public code 
of the β-VAE module by Higgins [30]. The original code 
of the β-VAE module is available at https:// github. com/ 
AntixK/ PyTor ch- VAE.

Comparison Algorithms

We ran PrAE [21] on the RAVEN-fair dataset. The model is 
publicly available at https:// github. com/ Welly Zhang/ PrAE.

We ran Rel-base [19] on the I-RAVEN and RAVEN-fair 
datasets. The model is publicly available at https:// github. 
com/ SvenS hade/ Rel- AIR.

We ran MRNet [17] on the I-RAVEN dataset. The model 
is publicly available at https:// github. com/ yaniv benny/ 
MRNet.

We ran SCL [20] on the RAVEN-fair dataset. The model 
is publicly available at https:// github. com/ dhh19 95/ SCL.

We ran SRAN [16] on the RAVEN and RAVEN-fair data-
sets. The model is publicly available at https:// github. com/ 
hushe ng123 45/ SRAN.

The model architectures and model parameters used are 
the same as those in the files.

Appendix 3. Training Details

FCNN Training Details

We trained the FCNN model on a CPU platform (Windows 
11 64-bit; Intel(R) Core(TM) i3-10110U CPU @ 2.10 GHz 
(4 CPUs)), and the model contains 4 convolutional layers 
(16, 32, 64, and 128 latent dimensions, kernel size 5 * 5, 
stride 1, padding 1) and a feedforward layer (16384 nodes). 
We generated 959 problems per configuration to train the 

https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
https://github.com/WellyZhang/RAVEN
https://github.com/WellyZhang/RAVEN
https://github.com/husheng12345/SRAN
https://github.com/husheng12345/SRAN
https://github.com/yanivbenny/RAVEN_FAIR
https://github.com/yanivbenny/RAVEN_FAIR
https://github.com/AntixK/PyTorch-VAE
https://github.com/AntixK/PyTorch-VAE
https://github.com/WellyZhang/PrAE
https://github.com/SvenShade/Rel-AIR
https://github.com/SvenShade/Rel-AIR
https://github.com/yanivbenny/MRNet
https://github.com/yanivbenny/MRNet
https://github.com/dhh1995/SCL
https://github.com/husheng12345/SRAN
https://github.com/husheng12345/SRAN
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FCNN module. For each problem, the model takes the first 
image as input and the configuration index of the problem 
as the label (cross-validation). The model was trained for up 
to 50 epochs and achieved 100% accuracy when classifying 
the configurations of the images.

sVAE Training Details

We trained sVAE on the institute’s GPU platform (NVIDIA 
SMI, 460.80; driver version, 460.80; CUDA version, 11.2).

Five hundred problems were generated for each con-
figuration to train and validate the sVAE module (approx-
imately 375 training problems and 125 validation prob-
lems). Each problem consists of 16 NumPy array figures 
containing one or more objects. We segmented the figures 
into individual object images according to the structural 
organization of the figures. We used the cropped object 
images and 1 * 29 vectors describing the objects’ meta-
information (type, size, color, and angle) obtained from 
the corresponding problem xml file to train the sVAE mod-
ule. We trained one sVAE model for each configuration, 
except for the O-IC and O-IG configurations, where we 
trained two separate sVAE models for the “in” and “out” 
configurations. The model was trained quickly, requiring 
less than 5 min and 10 epochs to obtain acceptable results. 
We trained the models up to the 100th epoch (or 50th epoch 
for the out configurations) to obtain good reconstructions.

The model used four losses to train: the object recon-
struction loss, the latent variable reconstruction loss, the 
supervised loss (difference between the semantic features 
and the labels), and the regularization loss (divergence 
between the distribution of the latent variables and the 
assumed distribution). The supervised loss used the 
smooth l1 loss, as in Eq. 3, while the other losses used the 
mean squared loss (mse), as in Eq. 4:

We evaluated the performance of the sVAE model on 
different training sample sizes (from 100 to 959 problem 
object segments). The model achieved top perceptual accu-
racy within 300 training problems and accurately answered 
RPM problems with human-designed cognitive maps. The 
reported model was trained on 500 problems (see Table 7).

The model did not need to see all objects to reason 
effectively. RAVEN contains 2400 objects. in this study, 
we used only 240 to 2400 images corresponding to 240 
to 2400 objects (one image per object) to train the model. 
The performance is shown in Table 8.

(3)l1 =

�∑n

i=0
0.5 × (yi − f

�
xi
�
)
2
, �yi − f

�
xi
�
� < 1∑n

i=0
�yi − f

�
xi
�
� − 0.5, othervise

(4)L = (yi − f (xi))
2

sVAE Image Generation

sVAE can generate clear answer images for RPM prob-
lems. To generate an answer image, the algorithm first 
generated object images according to object features and 
then arranged them according to their predicted posi-
tions. There were two levels of prediction (panel-level and 
object-level) for both object features and positions. We 
first considered object-level position predictions, which 
specify the attribute (feature or position) of a single object. 
If there was no object-level prediction, we assigned attrib-
utes according to the panel-level predictions. The panel-
level predictions did not specify which value corresponded 
to which object. Thus, the order of assignment was rand-
omized when we assigned values according to panel-level 
positions. If there were no predictions at both levels, we 
randomly assigned values to the attribute.

The semantic features in the sVAE altered the images 
in an understandable way, but this result was not possible 
with β-VAE (Fig. 17) [54].

Table 7  Model Perception and problem-solving performance for dif-
ferent sample sizes (number of object images)

Proportion of 
samples

Number of image Perception 
accuracy

I-RAVEN 
accuracy

0.1 3445 0.9722 0.927
0.2 6891 0.9993 0.989
0.3 10,337 1.0 0.989
0.4 13,783 1.0 0.989
0.5 17,229 1.0 0.989
0.6 20,675 1.0 0.989
0.7 24,121 1.0 0.989
0.8 27,567 1.0 0.989
0.9 31,013 1.0 0.989
1.0 34,459 1.0 0.987

Table 8  Perception and problem-solving performance of the model 
trained with different proportions of all 2400 objects

Proportion No. of images Val acc(all 
images)

Perception 
accuracy

RAVEN-
fair 
accuracy

0.1 240 0.9258 0.0848 0.507
0.2 480 0.9609 0.2707 0.595
0.3 720 0.9961 0.5944 0.786
0.4 960 0.9844 0.6910 0.830
0.5 1200 0.9961 0.8362 0.843
0.6 1440 1.0 0.9221 0.903
0.7 1680 1.0 0.9555 0.933
0.8 1920 1.0 0.9828 0.973
0.9 2160 1.0 0.9936 0.990
1.0 2400 1.0 0.9996 0.994
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Cognitive Map Training Details

The cognitive map is trained on a CPU machine (Windows 10 
64-bit Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz (12 CPUs)).

There are three types of feature maps: attribute feature 
maps, 2 × 2 position feature maps, and 3 × 3 position feature 
maps. Each type of cognitive map has two subtypes: 9 × 9 
feature maps and 9 × 9 × 9 feature maps.

To build feature maps for feature vectors containing 
attributes of the first eight panels and the answer panel, 
we found categorical numerical relationships between two 
(three) elements in the feature vectors. The position (a,b) 
((a,b,c)) in the 9 × 9 (9 × 9 × 9) feature maps stores the cate-
gorical relationship between the ath element and the bth ele-
ment or among the ath, bth, and cth elements in the feature 
vector. For attribute feature maps, the relationships in 9 × 9 
feature maps are “ + 1,” “-9,” “ = ,” etc., while the relation-
ships in 9 × 9 × 9 feature maps are “a + b = c,” “a – b – 2 = c,” 
etc. The relationships for 2 × 2 location feature maps and 
3 × 3 location feature maps are different from those for 
attribute feature maps. For example, “ + 1” defines a position 
relationship where all objects move to the right and the last 
object moves to the first. “a + b = c” means that the objects 
in the third panel occupy all the positions occupied by the 
first and second panels.

We generated 15,000 problems per configuration to train and 
validate the CMRB (10,000 for training and 5000 for validation). 
We used the “Center” configuration problems with 16 images per 
problem, one object per image, and three attributes per object to 
extract feature vectors and train the attribute feature maps. The 
sVAE model was used to acquire attributes from objects and 
construct feature vectors. A total of 30,000 feature vectors were 
constructed for the 3 attributes of 10,000 training problems. We 
provided additional candidate answers for attributes in the test 
set. If the predicted attribute value is not in the candidates, we 
allowed the algorithm to use other cognitive maps. The learned 
cognitive maps can be generalized to other configurations. Simi-
larly, we used the positional information from 2 × 2 and 3 × 3 
problems to train 2 × 2 and 3 × 3 positional feature maps.

We stored the acquired cognitive maps in each epoch (1000 
training steps) and selected the best-performing model from 
the training epochs based on the validation performance. 
The model was trained quickly and reached 99.5% validation 
accuracy in the 2nd training epoch with 2000 feature vectors 
(approximately 700 problems). The model reached its best 
performance (99.7%) in the 10th training epoch with 10,000 
feature vectors (approximately 3000 problems). The perfor-
mance of position cognitive maps on problems with “position” 
or “number/position” rules in the metadata was 1.0 (the meta-
data information about which problem has position relations is 

Fig. 17  When we changed the 
latent variables in the bottleneck 
of β-VAE, the change in the 
generated image was usually 
unpredictable. The attributes 
(shape, angle, and size) tended 
to change together. Many 
dimensions did not change 
the image at all. Conversely, 
when we changed the semantic 
features in sVAE, the change 
in the generated images was 
predictable. For example, we 
can change the shape of a tri-
angle from a triangle to a circle 
(second row). Alternatively, we 
can change its color from light 
to dark (fourth row). We can 
also create objects with these 
semantic features (last row)
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not available to the algorithms during training). The threshold 
similarity score  L0 for 9 × 9 feature maps and  L1 for 9 × 9 × 9 
feature maps are parameters for CMRB. The validation perfor-
mance of the model at different threshold similarity scores is 
shown in Tables 7, 8, and 9. The parameters that led to the best 
performance with the least number of cognitive maps (num-
bers in parentheses) were selected (italics).

LTM has a capacity of 30 for each subtype of feature 
map and can store a maximum of 180 cognitive maps in 
total. Finally, the best model generated 49 cognitive maps. 
7 (9 × 9) + 8 (9 × 9 × 9) attribute feature maps, 7 + 17 2 × 2 
position feature maps, and 6 + 4 3 × 3 position feature maps. 
Many cognitive maps capture the underlying rules in RPM 
problems. The algorithms also discover some rules that are 
not considered in RPM problems. These maps can solve 
some problems efficiently but can also lead to predictions 
that differ from the data generator (Tables 11 and 12).

Cognitive maps reflect how algorithms see RPM problems. 
In some cases, they see RPM problems differently than humans. 
For example, the algorithms sometimes use the plus operation 
in the position feature maps to solve cases where three different 
positions have the same value. This view is logically correct, but 
humans rarely see the problem this way. The algorithm usually 
discovers relationships between nonadjacent panels, which is 
unusual for humans This unusual behavior is similar to alphaGo, 
which has produced some unusual strategies in the game of GO.

Model Testing

Using parameters from the trained FCNN and sVAE mod-
ules and cognitive maps from the CMRB module, we tested 
the algorithms on 70,000 new problems (10,000 problems 
per configuration), and the resulting performance is reported 
in the main text (Fig. 18).

Appendix 4. Designed Cognitive Maps

We can draw a cognitive map by hand based on our under-
standing of the problem (i.e., Fig. 8) and represent it mathe-
matically: (1) we draw the structure and define nine variables 
(× 1, × 2,… × 9) corresponding to the 9 positions in 3 by 3 
matrices; and (2) we draw the edges and describe the edges 
(relations between the 9 variables) in mathematical terms and 
functions, i.e., × 2 =  × 1 + n, × 3 =  × 2 + n (n equals -9 to 9).

When given a new RPM problem, we fed its first 8 attrib-
ute values into the first 8 defined variables and observed 
if the mathematical equations were satisfied. If they were 
satisfied, we computed the 9th variable based on its relation-
ships to the other variables. The performance of the hand-
designed cognitive maps for 7 configurations in the RAVEN, 
I-RAVEN, and RAVEN-fair datasets is shown in Table 10.

Appendix 5. Generalization Experiment 
Datasets and Details

In the 3D-chairs dataset [39] (https:// www. di. ens. fr/ willow/ 
resea rch/ seein g3Dch airs/), we selected 20 types of chairs, 21 
images per chair (image size, cropped to center 592; resize 
256,256; channel no, 3) from left, right, front, and back angles 
(4–6 images per angle, marginally different from each other), 
and applied four types of transfigurations (zoom, stretch, shift, 
and color change with 5, 5, 3, and 5 dimensions) to the images, 
creating a dataset of 157,500 images (7875 per chair type) and 
labels (documenting types, transfigurations, and angles).

For 3D face datasets [40] (https:// faces. dmi. unibas. ch/ bfm/ 
bfm20 19. html), we used the Basel face model to construct three-
dimensional faces with 53,490 3D vertices. Each vertex had three 
position indices (x, y, z) describing the topological corresponding 
position of the vertex and three color indices (r, g, b) describ-
ing its texture. A new face was generated by randomly sampling 
from Gaussian distributions and determining the weight of the 
first 199 shape principal components (the principal component 
of the position indices) and the first 199 appearance principal 
components (the principal component of the color indices). We 
created a dataset of 25,000 images (image size, resize 256 × 256; 
channel number, 3) and labels by taking a photo at the 60° left 

Table 9  Performance of attribute feature maps at different similarity 
thresholds

The italics highlight the selected best performing parameter

L1 = 1 L1 = 2 L1 = 3

L0 = 4 0.9737(7 + 6) 0.9953(7 + 8) 0.9768
L0 = 5 0.9737(7 + 6) 0.9853(7 + 6) 0.9752
L0 = 6 0.9761(7 + 6) 0.9944(7 + 7) 0.9841
L0 = 7 0.9761(7 + 6) 0.9944(7 + 7) 0.9805

Table 10  Performance of 
2 × 2 position feature maps at 
different similarity thresholds

The italics highlight the selected 
best performing parameter

L1 = 1 L1 = 2

L0 = 2 1 (14 + 16) 1 (11 + 24)
L0 = 3 1 (7 + 17) 1 (7 + 25)
L0 = 4 1 (7 + 18) 1 (8 + 25)
L0 = 5 1 (7 + 18) 1 (7 + 25)

Table 11  Performance of 3 × 3 position feature maps at different sim-
ilarity thresholds

The italics highlight the selected best performing parameter

L1 = 1 L1 = 2 L1 = 3

L0 = 4 1 (6 + 4) 1 (6 + 4) 1 (6 + 3)
L0 = 5 1 (6 + 4) 1 (6 + 4) 1 (6 + 3)
L0 = 6 1 (6 + 4) 1 (6 + 4) 1 (6 + 3)
L0 = 7 1 (6 + 4) 1 (6 + 4) 1 (6 + 3)

https://www.di.ens.fr/willow/research/seeing3Dchairs/
https://www.di.ens.fr/willow/research/seeing3Dchairs/
https://faces.dmi.unibas.ch/bfm/bfm2019.html
https://faces.dmi.unibas.ch/bfm/bfm2019.html
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viewing angle for each constructed face and using the weight of 
the first 25 shape and appearance components as labels.

The CelebA dataset [41] (http:// mmlab. ie. cuhk. edu. hk/ 
proje cts/ CelebA. html) contains 202,599 images (image size, 
crop to center 148 resize 128 × 128; channel number, 3; ran-
dom horizontal flip) labeled with 40 binary attributes and 
ten landmark locations. We also trained an active appear-
ance model (AAM, https:// www. menpo. org/ menpo fit/ aam. 
html) to place 68 landmark point markers carrying shape 
information of faces to acquire additional brain-like shape 
and appearance labels. With the acquired shape information 
from the landmark locations, we morphed the landmarks to 
match the average landmark locations to produce images 
carrying shape-free appearance information and projected 
shape information and shape-free appearance onto 24 prin-
cipal components. The scores of the images on these shape 
and appearance principal components, along with the 50 
semantic labels from the dataset, were used to train the 
model, resulting in 98-dimensional labels.

The LFW dataset [42] (http:// vis- www. cs. umass. edu/ lfw/) 
contains 13,233 images (image size, crop to center 148 resize 
128 × 128; channel number, 3; random horizontal flip) with 
73-dimensional numerical labels. We generated an additional 
48-dimensional brain-like shape and appearance labels using 
the active appearance model as the CelebA dataset.
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