
Vol.:(0123456789)1 3

Cognitive Computation
https://doi.org/10.1007/s12559-023-10154-3

An Interpretable Neuro‑symbolic Model for Raven’s Progressive
Matrices Reasoning

Shukuo Zhao1 · Hongzhi You2 · Ru‑Yuan Zhang3,4 · Bailu Si1 · Zonglei Zhen5 · Xiaohong Wan5,6 · Da‑Hui Wang1,5,7

Received: 1 October 2022 / Accepted: 5 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Raven’s Progressive Matrices (RPM) have been widely used as standard intelligence tests for human participants. Humans
solve RPM problems in a hierarchical manner, perceiving conceptual features at different levels and inferring the latent
rules governing the matrix using cognitive maps. Although the latest AI algorithms can surpass human performance, little
effort has been made to build a model that solves RPM problems in a human-like hierarchical manner. We built a human-
like hierarchical neuro-symbolic model to solve RPM problems. The proposed model consists of a semantic-VAE (sVAE)
perceptual module and a cognitive map reasoning back-end (CMRB). The supervised sVAE extracts the hierarchical visual
features of RPMs by perceiving the structural organization of RPMs through a convolutional neural network and disentan-
gles objects into semantically understandable features. Based on these semantic features, the CMRB predicts the semantic
features of objects in the missing field using cognitive maps generated by supervised learning or manually designed. The
answer image was generated by sVAE using the semantic features predicted by CMRB. The proposed model achieved state-
of-the-art performance on three benchmarks datasets—RAVEN, I-RAVEN, and RAVEN-fair—generalizes well to RPMs
containing objects with untrained feature dimensions, mimics human cognitive processes when solving RPM problems,
achieves interpretability of their hierarchical processes, and can also be applied to some real-world situations that require
abstract visual reasoning.

Keywords Raven’s Progressive Matrices · Semantic-variable autoencoders · Cognitive maps · Visual abstract reasoning ·
Artificial intelligence

Introduction

The ability to generalize is critical for humans to reason
flexibly and quickly [1, 2]. A commonly studied neural
mechanism for generalization is how humans build cognitive
maps in the entorhinal cortex using grid cells that factorize
representations of hippocampal place cells [2, 4] for spatial
generalization [1, 3]. Researchers have found that similar
principles apply in nonspatial domains [2]. For example, in
the semantic domain, when faced with the simple problem
“woman-man, queen-?”, people first factorize the “queen”
into gender and status representations, and then generalize
in the gender dimension [2, 5]. Because this (semantic) cog-
nitive map reasoning process is the foundation of abstract
reasoning, we built a general model to mimic the human
reasoning process when solving RAVEN problems.

Raven’s Progressive Matrices (RPM) [6] have been
widely used as standard intelligence tests for human par-
ticipants [7, 8]. Each test takes the form of a 3 × 3 matrix

 * Da-Hui Wang
 wangdh@bnu.edu.cn

1 School of Systems Science, Beijing Normal University, 19th
Xinjiekouwai Street, Haidian, Beijing 100875, China

2 School of Life Science and Technology, University
of Electronic Science and Technology of China, No. 2006,
Xiyuan Avenue, Sichuan, Chengdu 611731, China

3 Institute of Psychology, Shanghai Jiao Tong University,
No. 80, Dongchuan Street, Minhang, Shanghai 200030,
China

4 Behavioral Science and Shanghai Mental Health Center,
Shanghai Jiao Tong University, No. 80, Dongchuan Street,
Minhang, Shanghai 200030, China

5 State Key Laboratory of Cognitive Neuroscience
and Learning, Beijing Normal University, 19th Xinjiekouwai
Street, Haidian, Beijing 100875, China

6 IDG/McGovern Institute for Brain Research, Beijing
Normal University, 19th Xinjiekouwai Street, Haidian,
Beijing 100875, China

7 Beijing Key Laboratory of Brain Imaging and Connectomics,
Beijing Normal University, Beijing 100875, China

http://orcid.org/0000-0002-6447-7516
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-023-10154-3&domain=pdf

 Cognitive Computation

1 3

with the bottom right panel missing. Participants are asked
to identify the underlying rules that govern the progression
of the matrix and to apply the rules to complete the miss-
ing entry of the matrix. Human participants have relied on
conceptual semantic abstraction and analogical reasoning
to solve RPM problems [9, 10]. Semantic abstraction can
occur in Gestalt hierarchical perception [11, 12], and ana-
logical reasoning can easily generalize learned knowledge
to new situations [13, 14].

Many efforts have been made to solve RPM problems
using artificial intelligence (AI) algorithms [10]. A digital
dataset “RAVEN” was proposed for AI algorithms and then
became a benchmark problem for abstract spatiotemporal
reasoning [15]. Seven configurations (Center, 2*2 Grid,
3*3 Grid, Left–Right, Up-Down, Out-InCenter, and Out-
InGrid; see Figs. 4 or 5 in [15]) of 3 × 3 matrix problems
that have similar progressions in RPM were automatically
generated by the algorithm in the RAVEN dataset; objects
were arranged differently according to the configurations. AI
algorithms must identify the rules in the rows of the matrices
and complete the 9th cell of the matrices in all configurations
[15]. The subsequent “I-Raven” and “Raven-FAIR” datasets
improved the algorithm’s ability to generate false candidates
for the missing panel in the RAVEN dataset [16, 17].

AI algorithms can even surpass human performance with
adequate training on these datasets (see Tables 1 and 2) [10,
18]. Based on the supervised learning method, the Rel-base
and Rel-air models used convolutional neural networks
(CNNs) to identify the attributes of matrices and to find the
relationships between panels [19]. The SCL used scattering

transformation in shared attribute and relation modules to
acquire attributes and rules [20]. The MRNet used a multi-
scale feature extraction module and a relational network to
determine the relevance between different panels in differ-
ent rows [17]. The PrAE model used neural networks and a
symbolic reasoning backend to identify visual features and
find the most plausible attribute values [21]. The ALANS
learner, which is another type of neurosymbolic model, used
algebraic methods to represent the relationships of attributes
extracted from encoders [22].

Although the latest AI algorithms can surpass human
performance, little effort has been made to build a model
that solves RPM problems in a human-like hierarchical man-
ner, translating the physical attributes of RPM into semantic
conceptual features and inferring the latent rules governing
the modification of matrices using cognitive maps or mental
models. In this study, we developed a model to solve RPM
problems in a human-like manner. The proposed model
showed clear progress in describing how and why answers
are generated and predicted what the answer image looks
like for the missing cell with no candidate answers, as pre-
dicted by Gestalt psychology [23]. The proposed model may
report incorrect answers, but errors can be human-like and
semantically understandable.

Related Works

Psychological Model for Solving RPM Problems

Psychologists have developed models to describe the psy-
chological stages and cognitive skills involved in the RPM
problem-solving process. In one psychology-based model,
five psychological steps were required to solve RPM prob-
lems. Hierarchical perception (the first step) determined
which parts to consider as a whole and perceived each seg-
ment separately (i.e., as edges and as a whole). In the second
step, the model compared and found consistencies and dif-
ferences in different hierarchies across panels. If the com-
parison failed, the model reorganized the perception in the
first step. In the remaining three steps, the model reasoned
about the critical consistencies and differences to find the
answers [11]. Psychology-based models were less complex
but more semantically explicable than performance-based
AI algorithms.

Variational Autoencoders

Autoencoders (AEs) are neural networks that consist of
three parts: encoder, bottleneck, and decoder [24, 25]. The
encoder part takes the input data and compresses the data
into a low-dimensional latent space represented by the bot-
tleneck, and then, the decoder recovers the data from the
compressed latent representation. Variational AE (VAE) has

Table 1 Average accuracy of different algorithms

a An asterisk (*) indicates that we tested the model by us; other unmarked
values were taken from the literature

Methods RAVEN I-RAVEN RAVEN-fair Acc

PrAE [21] 65.0 77.0 88.3* 76.8
ALANS [22] 79.6 65.4 - 72.5
Rel-base [19] 91.7 92.1* 92.8* 92.2
MRNet [17] 96.6 85.1* 88.4 90.0
SCL [20] 91.6 95 91.7* 92.8
SRAN [16] 55.7* 60.8 71.3* 62.6
sVAE-CMRB 97.7 98.2 98.8 98.2
designed CM 97.7 98.1 98.9 98.2

Table 2 Average accuracy
of VAE-related methods on
RAVEN

a C0 was tested on RAVEN-fair

VAE methods I-RAVEN(a)

LoGe [27] 62.9
C0 [29] 60.8a

Ours 98.2

Cognitive Computation

1 3

the same structure as AE but views the recovery process as
an inference problem. With regularized latent dimensions,
VAE can generate new data points [26]. VAE has been used
to solve Raven-related problems for feature disentanglement
[27, 28] and answer image generation [27, 29] or Gestalt
image completion [23]. Answer generation without candi-
dates is more complex and human-like than other AI algo-
rithms. Although VAE algorithms can sometimes generate
reasonable answers and images, overall performance has not
been good [23, 27, 29].

The hyperparameter β was introduced in β-VAE to bal-
ance the reconstruction and regularization losses [30], which
enhanced the disentanglement of the latent variables and
improved the performance. Although β-VAE was efficient
for data disentanglement, we do not know the semantic
meaning of the latent dimensions produced by β-VAE, the
conceptual features they encode, or how the latent dimen-
sion affects image regeneration. In this paper, we introduce
a semantic version of VAE (sVAE) that can decompose fig-
ures into semantic dimensions through supervised learning
(see Fig. 2). sVAE can generate learned images and novel
images according to semantic descriptions by changing the
semantic features in the bottleneck (morphing images).

Cognitive Maps

Tolman first proposed cognitive maps as a systematic organ-
ization of knowledge that spans all domains of behavior
[1]. Later, the hippocampus was recognized as the neural
substrate of cognitive maps [3]. Computationally, cognitive
maps represent generalizable action transitions between dif-
ferent state spaces that can be modeled by reinforcement
learning algorithms such as successor representation [31,
32], linearly solvable Markov decision processes [33], cog-
nitive graph models such as the clone-structured cognitive
graph model (CSCG) [34], and neural-inspired grid cell
models that perform path integration [1, 2]. Recently, a uni-
fied framework called the Tolman-Eichenbaum machine
provided a model that shows the role of the hippocampus
in spatial and nonspatial generalization and the principles
underlying many entorhinal and hippocampal cell types
[4]. The cognitive maps proposed by Whittington were
independent of specific locations and could be generalized
across different maps. When entering a new environment,
the encoding of spatial knowledge by grid cells binds with
the encoding of places by place cells to form a complete cog-
nitive map from which we can infer the relationship between
any two nodes in the map. This process can be generalized to
nonspatially structured relationships such as family trees [4].
RPM problems contain similar general “feature maps” that
can be generalized across different RPM problems. Humans
can abstract these feature maps to form cognitive maps and
use them to reason across contexts.

Purpose of This Study

We build a high-performance model with human-like per-
ceptual and reasoning capabilities by incorporating percep-
tual and semantic reasoning technologies VAE and cogni-
tive maps to mimic human behavioral reasoning pipelines
involving hierarchical perception, comparison, and critical
difference finding, as in psychological studies [11], and to
realize human neural mechanisms of factorization (disen-
tanglement) and cognitive map building. First, the model
can generate human-like object perceptions and percep-
tual expectations by disentangling objects into conceptual
semantic latent dimensions and generating integrated rep-
resentations and expectations for objects beyond the enu-
meration of its part. Second, the model can reason abstractly
at the conceptual or semantic level rather than at the pixel
level. Third, the model can respond accurately by predicting
the attributes of the missing field and generating the possible
image of the answer without the candidates for the missing
field of the matrices.

Methods: the Neuro‑symbolic sVAE‑
CMRB Model

Model Overview

Experiments were performed on NVIDIA GeForce GPU
platforms (driver version, 510.39.01; CUDA version, 11.6;
or driver version, 460.80; CUDA version, 11.2) and a CPU
(Windows 10 64-bit Intel(R) Core(TM) i7-8700 CPU @
3.20 GHz (12 CPUs)). The proposed model (see Fig. 1)
solved the problems in two human-like stages. In the first
stage, hierarchical perception extracted the structural organi-
zation of the problem, the features of each panel, and the
attributes of the objects in each panel. In the second stage,
the model learned the rules governing the progression of
the matrix and realized abstract reasoning. In the test con-
dition (second stage), the model applied the learned rules
to generate answer images with predictions or to compare
attribute predictions with selections. The model consists of
three modules, each of which is shown below.

Structural Organization Perception FCNN‑Network

Hierarchical perception is a coarse-to-fine perceptual pro-
cess in psychology. The configuration or arrangement of the
items of RAVEN problem is the global or coarse informa-
tion, which often be processed at first in our brain accord-
ing to global first theory by Lin Chen [35]. In the model,
FCNN is the first perceptual level and simplifies by assum-
ing that human’s perception at this level is determined by the
type of problem, implying that the same type of problem is

 Cognitive Computation

1 3

perceived roughly in the same way. A convolutional neural
network with four layers (16, 32, 64, 128 latent dimensions,
kernel size 5 * 5, step 1, padding 1) and a feedforward layer
(16384 nodes) was jointly trained (FCNN) to recognize the
type of RPM problem. This structural organization informa-
tion was critical because the framework of semantic descrip-
tion and cognitive maps was different for different problem
types. The FCNN network took the image of the first panel
(size: 160 * 160) of the problem as input and output one-hot
encoded structural organizations corresponding to one of
the seven types of RPM problems (Center, 0; 2*2 grid, 1;

3*3 grid, 2; Left–Right, 3; Up-Down, 4; Out-InCenter, 5;
and OutInGrid, 6). We used 959 problems per configuration
to train the FCNN module (cross-validation). The FCNN
learned quickly, reaching 100% accuracy after seeing 959
* 7(= 6713) problems in 50 training epochs. According to
the resulting structural organization of the RPM problem,
the image of each panel can be segmented into individual
objects whose semantic features can be extracted by the
sVAE framework described in the following subsection.
The structural organization information also determined
the maximum number of object-level features to consider in

Fig. 1 Overview of the proposed model framework. Training con-
dition (top): Given an RPM problem, the FCNN first processes the
eight problem panels and the answer panel; recognizes the structural
organization of the problem; extracts object position information (in
gray); and segments the image into objects (in blue). The sVAE then
processes the object segments and disentangles them into semantic
features. CMRB analyzes position information (in gray) and seman-
tic features at the panel or object level (including type (in blue), color
(in yellow), size (in green), and angle (in purple) information) for the
eight problem panels and the answer panel, abstracts relationships,

generates predictions, and learns cognitive maps. The supervisions are
applied to the model as indicated. Testing condition (bottom): In the
test condition, without providing the answer panels to the model, the
trained FCNN and sVAE modules extract detailed semantic features
of objects and positions in the first eight panels, and the CMRB pre-
dicts features in the missing panels. sVAE further constructs possible
answer images based on these predictions. To make a selection, FCNN
and sVAE process panels 8–16. CMRB compares the semantic fea-
tures of panels 8–16 with the generated predictions and selects the best
matching panel as the answer. The outputs are circled in red squares

Cognitive Computation

1 3

a problem in CMRB (different configurations had different
numbers of objects).

Semantic VAE Feature Extraction Module

The encoder of sVAE sampled the data (X) and generated
a joint distribution of X and its latent variables Z1. Z1 was
input to the feature encoder to produce human understandable
semantic features (f) of the sample data (X). The latter was
further input to the decoder of the semantic feature layer to
produce a new set of latent variables Z2 and the decoder recon-
structs X from Z2. The reconstruction loss is the difference
between the data X and the reconstructed X. VAE assumes that
Z follows a given distribution. Any violation of this distribu-
tion leads to a regularization loss. The relative weight between
the regularization loss and the reconstruction loss is modulated
by the hyperparameter β in β-VAE [30]. The β-VAE is efficient
at disentangling data, but the latent variables in the β-VAE
had no explicit semantic or conceptual meanings for the input
data; thus, it was difficult for us to understand the reason-
ing process of the model. To overcome this shortcoming, we
introduced semantic feature layers into VAE, i.e., projected
the latent variables (Z1) onto a feature encoder and then onto a
semantic feature layer (f) whose activity is semantically under-
standable in human-defined dimensions (i.e., successively
one-hot encoded shape (five dimensions), color (ten dimen-
sions), size (six dimensions), and angle (eight dimensions)).
The 29 semantic nodes in the semantic layer correspond to the
29 human-defined dimensions listed above, and the activation
of each node represents how well the input image fits within
that dimension. Taking a node as an example, if the image
being semantically analyzed fits precisely into that dimension,
the activation of that node converges to 1. If it does not, it

converges to 0. The supervision to the semantic layer is the
same as the one-hot encoded label of the input data obtained
from the corresponding problem XML file (see Appendix 3
for a more detailed description). The semantic feature layer
was then projected onto feature decoder layer and then onto
another latent variable (Z2) similar to Z1. With this modifica-
tion, the model’s decoder continued to use the latent variable
(Z2) to reconstruct the input image as a β-VAE (see Fig. 2).
Therefore, the loss of the sVAE model can be decomposed into
four parts: the object reconstruction loss, the latent variable
reconstruction loss, the supervised loss (difference between
the semantic features and the labels), and the regularization
loss (divergence between the distribution of the latent variables
and the assumed distribution), as in Eq. 1:

where β is the weight of the regularization loss relative to
other losses. In the proposed model, β was set to 10, as in
other typical β-VAE models. ϕ, θ, α, and γ were the param-
eters for the encoder (4-layer CNN encoder with 40, 64, 128,
and 256 latent dimensions; a kernel size of 3 * 3; a stride of
2; and a padding of 1), the decoder (4-layer transpose CNN
with 256, 128, 64, and 40 latent dimensions; a kernel size
of 3 * 3; a stride of 2; a padding of 1; and an outpadding of
1), the feature encoder (4096 hidden units), and the feature
decoder (4096 hidden units), respectively. We adjusted the
hyperparameters to minimize the loss. Smooth l1 means
smooth l1 loss, as in Eq. 2:

(1)
L = Eq�(z1|x)[log p�(x|z2)] + Eg�(f |z1)[log h� (z2|f)]

+ Smooth l1(f , labels) − � × DKL(q�(z1|x)|p(z1))

(2)l1 =

�∑n

i=0
0.5 × (yi − f

�
xi
�
)
2
, �yi − f

�
xi
�
� < 1∑n

i=0
�yi − f

�
xi
�
� − 0.5, othervise

Fig. 2 Schematic of the semantic
VAE module. Each bar represents
the output of one layer of the
algorithm. The encoder of sVAE
(4 layers) decomposes the images
of objects into low-dimensional
latent features (z1). The latent
features (z1) are fully connected
to the semantic layer (f). The
semantic feature layer (f) has
29 dimensions, representing
the semantic features of objects
(5 types, 10 colors, 6 sizes, 8
angles). The semantic feature
layer fully projects onto latent fea-
tures (z2). The decoder (4 layers)
regenerates the image according
to the latent features (z2)

 Cognitive Computation

1 3

We used 500 problems per configuration to train the
sVAE model (approximately 375 problems for training
and 125 problems for validation; different VAEs for dif-
ferent configurations because the labels did not match
across configurations). The sVAE model achieved 100%
accuracy in predicting the labels within 10 epochs of
training. sVAE can generate accurate images within 100
epochs of training. Panel features and individual object
features were extracted from the semantic features after
the semantic features of the objects were extracted. The
panel feature was the collection of attributes of all objects
in the panel. Feature of one attribute took a single value
if the attribute values were the same for all objects in
the panel or took a sorted (low to high) enumeration of
the attribute values if the panel contained objects with
different attribute values. The individual object feature
listed all objects and their attribute values in the panel.
If the second and third panels contained objects of the
same type as the first panel, the order in which the objects
were listed in these latter panels followed the order of
their most similar same-type objects in the first panel.
We used the individual object feature to describe how
the attributes of an object changed in a row because the
first object listed in the second and third panels in a row
corresponded to the object in the first panel. This process
mimicked the hierarchical processing of humans, who
perceive at different levels and compare at different scales
[11]. The panel feature and the individual object feature
were the inputs to the cognitive map reasoning back-end.

The semantic feature layer in sVAE provided a semantic
description of objects, and the decoder generated objects
with variations in semantic features. The semantic concepts
perceived by sVAE led to more efficient training with less
data because they were semantically generalizable, similar
to humans. The model did not need to see all objects to rea-
son, using images of 1440 objects to learn 2400 objects (see
“Result” and “Discussion” for details).

Cognitive Map Reasoning Back‑end

A cognitive map, or mental model, is a type of mental
representation or structured knowledge stored in long-term
memory (LTM). Human use cognitive maps to acquire,
encode, store, retrieve, decode, and infer the features of
spatial locations (or nonspatial abstract locations). Cog-
nitive maps are formed through experience. When peo-
ple encounter a new situation without prior knowledge
(cognitive maps), they experience links and relationships
between all members of the scene. Some of these con-
nections are crucial, while others are trivial. Success in

similar situations depends on the critical links. With feed-
back and contrasts from other scenes, people gradually
learn to focus only on the critical connections in similar
situations. The neural representations of these critical
links thus form cognitive maps and can be activated by
similarly structured cues [4, 36] for similar situations. The
cognitive map reasoning back-end (CMRB) used a similar
logic to generate the cognitive maps for RPM problems by
experiencing RPM problems in the training set according
to the following steps (see Algorithm 1).

Step 1: Given the first RPM problem in the training
set, the semantic features for the first eight panels and
the answer panel of the problem were extracted by the
sVAE module, resulting in a 1 × 9 vector for each attribute
(type, size, color, and position). A numerical relationship
(i.e., the difference between two values or whether the
first plus the second equals the third) can be calculated
between any two or three of these nine elements in the vec-
tor. In other words, if the value of the ath element is greater
than that of the bth element by one, then the relationship
between the two elements is “ + 1”; otherwise, it can be
“0” or “ − 2.” If there are three elements (ath, bth, and cth),
the types of the relations can be expressed as “a + b = c,”
with each expression corresponding to a specific relation
type. The cognitive map module assigns the relationship
between the ath, bth, and cth elements as “1,” for example,
if a, b, c follows “a + b = c” and the relation type number
of “a + b = c” is “1.” The numerical relationships or rela-
tionship types can be determined for every two or three
elements a ∈ (1,9), b ∈ (1,9; b ≠ a), and c ∈ (1,9; c ≠ b ≠ a
in three elements case). All two-two and three-three rela-
tions combine to make a 9 × 9 matrix or 9 × 9 × 9 tensor.
Figure 3 and Appendix 3 section “Cognitive Map Train-
ing Details” provide more detailed descriptions. When
the problem contained 2 × 2 or 3 × 3 grids, the position
information of these grids formed separate position feature
maps, resulting in three types of feature maps (i.e., attrib-
ute, 2 × 2 position, and 3 × 3 position feature maps). The
feature map was symmetric; thus, only the lower triangle
in the feature map must be considered. The feature maps
and the RPM problem that generated the maps were stored
in LTM, which has a capacity of 30.

Step 2: Given a second RPM problem in the training
set, 9 × 9 matrix (or 9 × 9 × 9 tensor) feature maps CMnew
can be computed. We compute the 8th-order principal sub-
matrices (subtenors) of CMnew, denoted CMnew,cue, as the
feature maps of the problem without the answer panel, and
define the similarity between two maps as the number of
elements in the feature map CMnew,cue that are equal to the
corresponding elements in CMold,cue.

Cognitive Computation

1 3

Step 2.1.1: If the similarity between CMnew,cue and all
 CMold,cue in LTM was less than the similarity threshold L0
(L1), the feature maps CMnew were novel for CMRB (see
Appendix Tables 7, 8, and 9 for the choice of L0 and L1).

Step 2.1.2: If the number of feature maps reached the
capacity of the LTM, CMnew and the problem replaced the
least active feature map and its associated problem. Other-
wise, CMnew and the problem were saved directly to the LTM.

Fig. 3 Schematics of the cognitive maps. Left: The algorithm forms a
feature map for an RPM problem with size attributes 1,2,3,2,3,1,3,1,2
(panels 1–9; panel 9 is the answer panel). As described in the text, the
feature map (orange and pink tables in the figure) is a 9 × 9 matrix.
The (a,b) position in the feature map represents the numerical rela-
tionship of the size attribute between panels a and b. (“ = ” means
equal, “ + 1” means the size of panel a is greater than panel b by

1). Middle: The algorithm encounters a similar instance (similarity
score > L0), creates a temporal cognitive map (keeping only the effec-
tive elements of the old cognitive map that have the same value as the
feature map of the new problem), and solves the problem using the
temporal map. Right: After multiple activations and updates, the final
cognitive map describes the “Distribute Three Left” relation

←

Algorithm 1 Acquire and apply cognitive maps

Require: feature vector d = x1, x2…x9//The attribute values of the first 8 panels and answer panel.

Ensure: CM index, p/ / The cognitive map index and the attribute prediction

1: for d in training set do/ / Enumerate feature vectors of training problems

2: CMnew,9×9, CMnew,9×9×9←generate relationmap(d)

3: if id > 2 then//Later than the second problem

4: CMcue,8×8 CMnew,9×9[: 8, : 8]

5: CMcue,8×8×8 ← CMnew,9×9×9[: 8, : 8, : 8]/ / Construct cues

6: for CMold in LTM do
7: L2 ← compare(CMcue,8×8, CMold,9×9)

8: L3 compare(CMcue,8×8×8, CMold,9×9×9)//Compute similarity

9: if L2 > L0 or L3 > L1 then//Activate similar cognitive maps

10: CMtemp ← same(CMnew, CMold)//Find same relationships

11: s1, p ← solve(CMtemp, d[0 : 8])/ / Solve the new problem

12: s2, p ← solve(CMtemp, d old[0 : 8])/ / Solve the old problem

13: if s1 == 1 and s2 == 1 then
14: update(CMold, CMtemp)/ / Update the cognitive map

15: count(1)+ = 1//Count the frequency of use

16: break/ / Break loop

17: end if
18: end if
19: end for
20: end if
21: if s1 == 0 and s2 == 0 then
22: save(CMold,9×9[argmin(count)], CMtemp,9×9)//save or replace

23: save(CMold,9×9×9[argmin(count 1)], CMtemp,9×9×9)

24: end if
25: end for

 Cognitive Computation

1 3

Step 2.2: If the similarity between CMold,cue and CMnew,cue
was greater than the similarity threshold L0 (L1), a similar old
feature map CMold was activated. Then, a temporal feature

map CMtemp was created in memory. The elements in CMtemp
were set to the value of the corresponding elements in CMold
if an element in CMnew was the same as the corresponding

Fig. 4 Example of generated objects. sVAE can generate objects with
semantic descriptions (latent semantic dimensions) by assigning values
to the semantic features type, color, size, and angle. This figure shows

five types of objects (top) with ten colors (bottom left), six sizes (bot-
tom center), and eight angles (bottom right) generated by sVAE

Fig. 5 Sample answer image
generated by sVAE. One prob-
lem for each configuration (as
labeled) is shown. The left side
of each configuration shows
the problem, and the right
side shows the answer image
provided by RPM dataset (left)
and the answer image generated
by model (right)

Cognitive Computation

1 3

element in CMold (and to zero if not). CMtemp encoded the
collective cognitive map memory in CMnew and CMold.

Step 2.2.1: Predict the values of the attributes of the
objects in the missing panel of the new problem and the
 CMold-related problem stored in LTM using the nonzero
elements in the 9th row of CMtemp. If more than half of the
predictions were correct, CMold in LTM was updated by
 CMtemp. We examined the next problem in the training set.

Step 2.2.2: If more than half of the predictions were
wrong for all CMtemps, which were created by CMolds in
LTM, CMnew was new to CMRB. CMnew and the problem
were saved to the LTM or as a replacement for the least
active feature maps and problems, depending on the number
of feature maps in the LTM. We examined the next problem
in the training set.

Step 3: When all the problems in the training set had been
examined, the CMRB completed the acquisition of cognitive
maps of the RPM problems and stored the maps in the LTM.

The CMRB can then apply the cognitive maps to solve
RPM problems. Given an RPM problem in the test set, the
sVAE module extracts the semantic features of the first eight
panels of the problem. CMRB then computes the similarity
between CMcue and the feature maps in LTM. The feature maps
 CMpre in LTM that fully match CMcue can predict the attributes
of the missing panel using the elements of the 9th row of the
maps. The sVAE module then generated the image of the miss-
ing panel using the predicted values of the attributes.

The mechanism of the CMRB module is specified in
Algorithm 1, and the functions in the algorithm are concep-
tually generalizable. The Compare function took two cogni-
tive maps (matrices) as input and output similarity scores
(number of identical elements, as in step 2). The same func-
tion created CMtemp with CMold and CMnew as in step 2.2.
The Solve function took a cognitive map and an incomplete
feature vector (the features of the first eight problem panels)
as input and applied transitions in the cognitive map, which

are defined as a 9 × 9 matrix or 9 × 9 × 9 tensor, as shown in
Fig. 3, to solve the missing features. The Update function
updates CMold with CMtemp. The Save function saved the
learned CMtemp to long-term memory or as a replacement
for the least active feature maps.

Result

We evaluated the performance of the neuro-symbolic sVAE-
CMRB model on the RAVEN, I-RAVEN, and RAVEN-fair
datasets (see Appendices for details), compared its perfor-
mance with other baseline models, and analyzed its errors.
Additional results are provided to illustrate the interpret-
ability and generalizability of the model.

Baselines

First, we compared the performance of the proposed model
with (1) the neuro-symbolic models PrAE and ALANS; (2)
the best-performing algorithms Rel-air, MRNet, SCL, and
SRAN; and (3) the VAE-based methods LoGe (VQ-VAE)
and C0 (VAE). For comparison purposes, in most cases,
we used the performance published in the literature. How-
ever, many models were not tested on all three datasets;
thus, we enriched the results of some models by performing

Fig. 6 The extrapolation
models (left) trained on partial
data of the training set without
squares of color 5-10 (top) or
circles of size 4-6 (bottom) pro-
duce similar images compared
to the full model (right) trained
on all data of the training set.
The numbers above and below
the images indicate the values
of the color and size attributes,
respectively. Details produced
by the full model are better (see
zoomed images in the middle
row of the figure)

Table 3 Extrapolation performance of sVAE on untrained objects, all
objects, and RPM problems

Models Untrained
dimensions

Perception
accuracy

RAVEN accuracy

Extrapolation 0.9781 0.9957 0.977
Extrapolation
 + 240 images

1 1 0.989

Full training 1 1 0.989

 Cognitive Computation

1 3

experiments with open codes on the datasets not tested by
the authors, as indicated by asterisks in Table 1. Second,
we compared the performance of the proposed sVAE model
with the traditional β-VAE model and the performance of
the CMRB with manually designed cognitive maps (see
“Result” and Appendices). Finally, we compared the per-
formance of the proposed model with perfect performance
as a baseline to show where it went wrong.

Result for the Semantic‑VAE Module

The sVAE module achieved interpretability by generating
accurate, fully disentangled semantic interpretations for all
items and by generating accurate figure representations for
all semantic descriptions. The model performed better at dis-
entangling and generating objects than the baseline β-VAE
model (figure reconstruction error: 0.00077 vs. 0.00252;
disentanglement score: 1.000 vs. 0.961). Perceptual accu-
racy in generating semantic interpretations was 1.0 for all
configurations except the O-IG (out-in-grid) configuration,
whose accuracy was 0.99. sVAE generated clear and mean-
ingful objects (Fig. 4) and answer images (Fig. 5) with the
semantic description generated by CMRB.

Its generalizability was evident in regard to generating
semantic interpretations (for objects) or figures (for descrip-
tions) for similar but unlearned items. We conducted an
extrapolation experiment to determine whether the algorithm
can understand and generalize Raven’s key semantic dimen-
sions. Size, color, and type are three semantic dimensions
in the Raven context that are crucial to defining laws and
relationships. In particular, the semantical understanding of
size and color can be transferred from one type of object
to another. In the extrapolation experiment, we excluded all
squares with colors 5–10 (or circles with sizes 4–6) from the
training set containing images of objects from the 500 RPM
problems. After training with this ablated training set, the

model never saw any squares with colors 5–10 (or circles
with sizes 4–6) but could accurately predict the semantic
color features (5–10) of the squares (or size features (4–6) of
the circles) and could generate accurate images for squares
with colors 5–10 (or circles with sizes 4–6; Fig. 6), sug-
gesting that the sVAE did not simply complete the task by
memorizing the learned items but rather “understood” the
semantic dimensions of color and size beyond the scenes it
had acquired (object types) to new scenes (squares or circles).
This process follows the definition of semantic knowledge
[37], and this organic understanding is generalizable to simi-
lar untrained objects. We fed 240 images of untrained objects
(one image per object) to further train the extrapolationally
trained sVAE. After training, the performance of the further
trained sVAE was equal to the performance of the originally
trained sVAE on 500 problems (Table 3).

Results for the Cognitive Map Module

CMRB is the first reasoning backend that provides inter-
pretable, transparent descriptions of the strategies induced
by CMRB in the form of cognitive maps. Figure 7 shows
4 typical learned cognitive maps (misleading cognitive
maps lead to interpretable errors, see the “Mistakes” sec-
tion). The cognitive maps implied reasoning that could be
transferred to any other problem with similar reasoning,
regardless of apparent differences at the pixel or attribute
level. These maps were compatible to new logics, where
these problems were easily recognized as novel and new
cognitive maps were formed. CMRB learned the cognitive
maps and achieved high accuracy in predicting the attrib-
utes of the missing matrices. The resulting performance
was comparable to the baseline of hand-designed cognitive
maps (Table 1). The prediction accuracy and the number of
learned cognitive maps varied with the similarity threshold
L0 (see Appendices for training and parameter details).

Fig. 7 Four typical cognitive
maps learned by CMRB. Each
map represents a progressive
relationship. The nine squares in
a map represent the nine panels
of the RPM, and the annotated
arrows indicate the numeri-
cal relationship between the
features of different panels at
the panel or object level

Table 4 Average accuracy for 7
configurations in the RAVEN,
I-RAVEN, and RAVEN-fair
datasets

Config/datasets Center 2*2 3*3 O-IC O-IG L-R U-D Average

RAVEN 0.992 0.9879 0.9931 0.9945 0.876 0.9963 0.9968 0.9767
I-RAVEN 0.9944 0.9742 0.9945 0.9968 0.9147 0.9987 0.9982 0.9816
RAVEN-fair 0.9932 0.9921 0.9954 0.9958 0.9436 0.9975 0.9979 0.9879

Cognitive Computation

1 3

Primary Results

The model performed well on all three datasets, achieving
good performance in all configurations (Table 4). The pro-
posed model produced the highest overall accuracy among the
baseline competitors (Tables 1 and 2; 97.7% on the RAVEN
dataset, 98.2% on I-RAVEN, and 98.8% on RAVEN-fair).

Mistakes

The algorithms rarely made mistakes. Perception was nearly
perfect unless the image was too small (e.g., in the O-IG
configuration). The accumulation of perceptual errors
caused a decrease in accuracy in O-IG cases. The cognitive
reasoning backend was accurate and powerful, solving 98%
of the problems. Occasionally, CMRB recognized some rela-
tionships that were not considered by the RAVEN dataset.
For example, CMRB might take a shortcut (e.g., the attrib-
ute of the 8th panel equals that of the 2nd panel) that was
not definitive, ignore critical information in the graph, use
unstable column information to make judgments, or make a
false generalization between unrelated problems (see Fig. 8).
These unrecognized relationships captured by these biased
cognitive maps can lead to incorrect predictions. However,

humans can make similar errors, particularly when they
are less familiar with the premise of RPMs. Errors were
reduced with training, particularly after we introduced for-
getting (deleting cognitive maps not used for a long time)
and prioritized cognitive maps that solved more problems.

Discussion

Inspired by how human solve RPM problems, we used the
sVAE-CMRB model to solve RPM problems in an interpret-
able and human-like way. The sVAE operated in a neural net-
work, while the CMRB operated in a symbolic manner. The
model perceived RPM problems in a hierarchical, human-like
manner and performed human-like symbolic reasoning, pro-
duced understandable intermediate results, and solved RPM
problems in a blank-filling manner with high accuracy.

Models' Innovations

Many machine learning models used sophisticatedly
designed modules to increase contrast [20], enable shared
rule processing [22], or develop higher level convolutions

Fig. 8 Four examples of cognitive maps, as in Fig. 7, that are generated
by the CMRB and that lead to incorrect predictions. The first map relies
on a false short-cut relationship between panels 1 and 8. The second
map ignores critical information from the first three panels. The third

map uses column wise relationships that are not defined in the RAVEN
datasets. The fourth map shows a special case of far-fetched generaliza-
tions between two unrelated problems. In this case, knowledge from one
problem should not be transferred to the other

Fig. 9 3D chair generation. The
sVAE model learns to describe
chairs in terms of the under-
standable semantic features of
type (top row), size (Axis 1),
height (Axis 2), width (Axis 3),
position (Axis 4), color (Axis
5), and angle (Axis 6) and
generates clear and meaningful
images with one-hot encod-
ings of the semantic features as
its latent semantic units. The
model can use these axes to
apply transfigurations or create
chair images

3D Chairs

type1 type2 type3 type4 type5 type6 type7 type8 type9 type10 type11 type12 type13 type14 type15

axis1
axis2

axis3
axis4

axis5
axis6

 Cognitive Computation

1 3

[21]. However, these models tend to perceive objects dif-
ferently in nonsemantic dimensions and rely on statistical
correlations at the pixel or representation level to solve
RPMs. In 2022, Ma et al. proposed “parsimony” as a general
principle for how we should build machine learning algo-
rithms [38]. The principle encouraged machines to abstract
parsimonious latent dimensions among mass data and build
representations on top of them. In this study, we exploited
the priority of the human brain and put efforts into building
a model that can abstract perceptual dimensions or rules,
“perceive” objects, and “communicate” or “generalize”
strategies in a human-like way, suggesting a possible way to
realize human-like intelligent abstract reasoning. Consider-
ing that the human brain has evolved so many years and is
sophistical to many challenging problems, we think this kind
of brain-inspired model can achieve great success in many
specific hard problems in the future.

The sVAE was shown to be a good successor to VAE.
With simple supervised constraints, the model performed
fine disentanglement and produced clearer images than
other VAE-based algorithms on the same datasets [27,
29]. Compared to the β-VAE model [30], the sVAE mod-
ule had semantic latent features that improved the model’s
explicability while enhancing its generalization (shown in
Appendix Fig. 9). The model’s generalizability led to more

efficient training and was sufficient to achieve high percep-
tual accuracy and to solve 90% of the problems with a small
training dataset (only 1440 object images). The reported
model achieved high performance within 300 problems (see
Appendix Table 7), and results suggest that we have made
significant progress in variational autoencoders.

Cognitive maps describe people’s mental models of
how to solve RPM problems [1, 4] and contain concep-
tual rules that can bind with specific problems. Due to
the abstract nature of cognitive maps, reasoning with cog-
nitive maps was different from reasoning with specific
rules and did not enumerate all possible rules to solve
a problem [21]. Rather, this reasoning applied a general
rule to a specific attribute value, which is similar to the
human problem-solving process. To our knowledge, the
proposed model is the first to apply cognitive maps to
the RAVEN, iRAVEN, and RAVEN fair datasets. CMRB
achieved high accuracy. As insights for machine learning
intelligence, we believe that cognitive maps are essential
for achieving human-like abstraction and generalization.
The machine learning community should apply the cog-
nitive map to solve reasoning or inference problems. A
large-scale application of cognitive maps is likely to result
in generalization and other intelligent behaviors, which
suggests a possible direction for abstract reasoning in the
future (see “Model Innovations” section).

Table 5 Figure reconstruction errors of sVAE and β-VAE on five datasets

Model RAVEN 3DChairs 3DFace celebA lfw

sVAE 0.00077 0.00933 0.00274 0.01467 0.01408
β-VAE 0.00252 0.00755 0.09461 0.02078 0.11825

Table 6 Disentanglement scores
of sVAE and β-VAE on the
RAVEN and 3D Chair datasets

Model RAVEN 3DChairs

sVAE 1 1
β-VAE 0.961 0.969

Fig. 10 sVAE describes 3D faces with semantically identifiable dimen-
sions of shape, appearance [52, 53], and labels. sVAE also produces
higher-quality figures compared to β-VAE. a Face images (top) and sVAE
reconstructions (bottom). b Face images (top) and β-VAE reconstruc-
tions (bottom). c Shape and appearance dimensions learned by sVAE. An

“average face” (first column) is constructed by setting the semantic units
to the mean of 5000 random faces. For the remaining columns, we mod-
ify the “average face” by adding 3 standard deviations to one dimension
(dim0 to dim8). d Latent dimensions learned by β-VAE (as in c). e sVAE
can generate faces from different angles with one angle as input

Cognitive Computation

1 3

Generalization

The proposed model can be easily generalized to real-
world situations that require abstract visual reasoning. We
tested the proposed sVAE model on the 3DChairs dataset
[39], the 3DFace dataset [40], the celebA dataset [41],
and the LFW dataset [42] (see Appendix 5 for detailed
documentation of the generated datasets and labels) with
the following settings:

• Encoder: five-layer convolutional-neural-network (CNN, ker-
nel size:3) with 32, 64, 128, 256, and 512 hidden dimensions

• Feature encoder: fully connected feed-forward layer with
16384 nodes

• Semantic feature layer: fully connected feed-forward
layer with equal or more nodes to label dimensions

• Feature decoder: fully connected feed-forward layer with
16384 nodes

• Decoder: five-layer transpose CNN (kernel size: 3) with
512, 256, 128, 64, 32 hidden dimensions).

The sVAE model identified meaningful semantic attrib-
utes in all datasets and outperformed the β-VAE algorithm
in image reconstruction, disentangling, and semantic

Fig. 11 sVAE describes realistic face images in the celebA dataset with
semantically identifiable dimensions of shape, appearance (extracted by
the active appearance model as in [52, 53]; see Appendix 5 for details),
and labels. sVAE also produces high-quality images (compared to
β-VAE). a Face images (top) and sVAE reconstructions (bottom). b
Face images (top) and β-VAE reconstructions (bottom). c Shape and
appearance dimensions learned by sVAE. d Latent dimensions learned

by β-VAE (as in c). (E) sVAE morphs the “average face” image by
decreasing or increasing the value of a semantic dimension (from -3
sd to 3 sd, where “sd” is the standard deviation of 5000 faces). Shape
dimensions primarily change the shape of the face (left), while appear-
ance dimensions primarily change the appearance (e.g., eyes and skin
color, right). f β-VAE morphs average faces by changing the value of an
example dimension in d

 Cognitive Computation

1 3

morphing. Tables 5 and 6 show the sVAE and β-VAE algo-
rithms’ reconstruction errors (mean square error between
reconstructed and original images) and disentanglement
scores (accuracy with which differences in latent features
between two images predict changes in defining attrib-
utes [30]) on the datasets. We did not measure disentan-
glement scores on the face datasets because there are no
defining attributes. Figures 9, 10, 11, 12, 13, 14, and 15
show how we can use sVAE to semantically construct and
morph chairs and faces. In these more meaningful settings
of object and face, the CMRB should be able to infer rela-
tionships between objects or faces, as in the new problems
we proposed in Fig. 16. This result has real-world implica-
tions for reasoning and suspect portrait generation based
on eyewitness evidence [43].

In this study, we provided a method to generate the cogni-
tive maps for RPM problems. Compared to traditional cogni-
tive map experiments that generalize in sequential problems
with spatial relations [2, 34], the proposed model was an
instantiation of the cognitive map concept at the conceptual
level, where the generalizable relations can be numerical.
We have shown that the model can generalize to real-world
stimuli of objects and faces. We believe that the model can
be broadly generalized to other circumstances, such as real-
world problems that have a state-space representation with
certain generalizable types of relations between state-spaces
of the concerned system [2]. For example, Whittington gen-
eralized cognitive maps to make family tree predictions [4],
and Son generalized cognitive maps to enable flexible infer-
ence in social networks [5].

An important factor that accounts for the more abstract
representation and generalization in the cognitive map is
that it (the grid cell representation) factorizes lower-level
representations (place cell representations) into upper-level
eigenvectors [2]. This factorization can be different in con-
ceptual state-spaces. In this study, with the development of
sVAE, we have enabled a similar factorization in concep-
tual dimensions, factorizing an abstract state (figure) into
its latent dimensions. Because sVAE can be generalized to
disentangle more complex real-world stimuli such as faces
and chairs, the perceptual front end should enable better
generalization of cognitive maps at the conceptual level in
realistic visual environments.

Neural Basis of Reasoning in RPM

The proposed model mimics the perception and reasoning
processes in the human brain. Hierarchical perception takes
place primarily in brain areas V1–V4 and IT. Visual areas
rely on feedback projections and experience to segment
objects from their environment [44]. Categorical coding of
object segments can be achieved in IT [45]. For reasoning,
we rely on long-term memory, and structured knowledge can
take the form of cognitive maps [36]. In the brain, cognitive
maps reason by jointly activating neurons that encode spa-
tial and other features. This process implicates hippocam-
pal, entorhinal, and frontal neurons [3, 4]. fMRI research
suggests that frontal and parietal regions, visual working
memory–related brain areas [46], and the caudate in the
basal ganglia [47] are more activated when solving RPM.

sVAE labels

attractive bangs black_hair blond_hair brown_Hair gray_hair male mouth_open oval_face wavy_hair

attractive
bangs

black_hair
blond_hai r

brow
n_H

air
gray_hair

m
ale

m
outh_open

oval_face
w
avy_hair

-3sd -1.5sd average +1.5sd +3sd -3sd -1.5sd average +1.5sd +3sd -3sd -1.5sd average +1.5sd +3sd

arched
eyebrows

bushy
eyebrows

heavy
makeup

high
cheekbones

receding
hairline

arched
eyebrow

s

bushy
eyebrow

s
heavy

m
akeup

high
cheekbones

receding
hairline

Fig. 12 CelebA provides additional semantic labels for the face images.
These labels are used to train the sVAE, along with the computed shape
and appearance. sVAE learns to describe images with these additional
labels and morphed images using semantic features derived from the

labels. Top: Images morphed from the “average face” by setting the value
of a semantic feature (from additional labels) to + 3sd above the mean.
Others: Images morphed from the average face by changing the value of
the semantic labels (from -3 sd to + 3 sd)

Cognitive Computation

1 3

Limitations and Future Work

We have introduced human-understandable features in
our model, primarily represented by the neurons of the

bottleneck of sVAE. These features are ad hoc because they
are trained by and specific to the data in RAVEN problems.
If we want to apply it to nonraven problems, we need to train
them using the dataset of the new problem, which implies

Fig. 13 sVAE produces high-quality figures that morphs the shape
(top) and appearance (bottom) of sample images (left: sVAE, right: β
-VAE). The annotated dimensions are changed from the disentangled
value of the figure to the value plus -3 sd to 3 sd to produce morphed

images. Compared to sVAE, β-VAE morphs images in a more entan-
gled way (e.g., when introducing changes in skin color (bottom)),
sometimes the gender and shape of the faces also change

Fig. 14 As in the celebA dataset, sVAE represents realistic face images
in the LFW dataset with semantically identifiable dimensions of shapes,
appearances [52, 53], and labels and produces high-quality figures
(compared to �-VAE). a Face images (top) and sVAE reconstructions

(bottom). b Face images (top) and β-VAE reconstructions (bottom). c
Shape and appearance dimensions learned by sVAE. d Latent dimen-
sions learned by β-VAE (as in c)

 Cognitive Computation

1 3

that we cannot directly apply the model to different sce-
narios. Since sVAE features are ad hoc, we need to be aware
of the features of the scenario to enable the models to char-
acterize the set semantically. To overcome these limitations,
we need to incorporate a higher-level perceptual module to
extract the underlying dimensions, enabling the model to
learn scene features autonomously.

Our model requires some specific human designs, such
as the dimensions in the semantic feature layer of sVAE
and the dimensions of the cognitive map. These designs are
inspired by the hierarchical processing and semantic percep-
tion of our brain, and how humans acquire and generalize
their knowledge using cognitive maps to solve problems.
We ensure that the algorithm accumulated knowledge on its

own during the learning experience (i.e., semantic knowl-
edge about size and color and cognitive maps that solve the
RPM problem) and was beyond the design.

The cognitive maps in this paper were conceptual. In the
future, we need to build more biologically plausible models
for RPM reasoning. Solving RPM problems in a human-like
way provides insight into how we solve real-world reasoning
problems. We must improve the encoding capability of the
semantic VAE module to manage multiplexed stimuli and
learn rich cognitive maps to model general reasoning under
flexible real-world conditions.

The proposed model uses a small amount of metadata to
train as [48, 49], which is a shortcoming since that the meta-
data is not available in some real-world scenarios. The lack

Fig. 15 LFW dataset also provides additional semantic labels for face images. These labels are used to train the sVAE along with the computed
shape and appearance dimensions. sVAE learns these additional labels and morphs images according to the variation of the semantic features

Fig. 16 RPM-like question
constructed for realistic images
(left: progression in the size of
chairs, right: progression in the
appearance of faces (the depth
of the eye socket)). As in RPM,
the algorithms need to abstract
the rules that govern the matrix
and complete the missing cell
(the ninth cell) in a meaning-
ful way. Correct answers are
marked with red squares

Question 1 Question 2

Cognitive Computation

1 3

of metadata is a big challenge for many AI algorithms, espe-
cially semantic decoupling AI. Many models have attempted
to replace metadata with unsupervised approaches, such as
adversarial training [50] and Monte Carlo estimation [51],
and have made progress in automatic semantic decoupling.
The proposed model achieves good performance under simi-
lar objectives by directly using labels and supervision, simi-
lar to the early development of children's concept learning.
Eventually, we will be able to replace supervision with new
algorithms based on simpler principles and achieve unsuper-
vised semantic decoupling.

Conclusion

We built a neuro-symbolic model to mimic human cognitive
processes when solving RPM problems. The sVAE mod-
ule extracted the semantic features of RPM problems in a
hierarchical manner, while the CMRB inferred the missing
panel based on the semantic feature using cognitive maps.
The proposed model achieved good performance on three
benchmarks datasets (RAVEN, I-RAVEN, and RAVEN-
fair). In the future, more efforts should be devoted to more
biologically plausible models. We believe that a deeper
understanding of how structural knowledge is stored and
retrieved; how perceived dimensionality is organized in the
brain; and how cognitive maps are represented and formed
must benefit brain-inspired intelligent algorithms for dif-
ficult and general real-world problems.

Appendix 1. Code

The code for this study is available at https:// github. com/
scien tific- lab/ Toward_ Intel ligent_ Seman tic_ Reaso ning_ on_
Raven-s_ Progr essive_ Matri ces.

Appendix 2. Datasets, Models, and
Other Resources

Datasets

We used the RAVEN [15], I-RAVEN [16], and RAVEN-fair
[17] data generators to generate standard RPM problems.

The RAVEN dataset [15] (https:// github. com/ Welly Zhang/
RAVEN) uses a hierarchical generator to generate problems
with different configurations, rules, and attributes. The data-
set has 7 configurations: Center, 2 × 2Grid, 3 × 3Grid, L-R,
U-D, O-IC, and O-IG; 4 rules: constant, progression, distrib-
ute three, and arithmetic. The objects in the problems have 6
attributes: number, position, type, size, color, and orientation.
The wrong answers are generated by changing one attribute
of the correct answer, which introduces an answer bias; thus,
wrong answers indicate the right answer.

The I-RAVEN dataset [16] (https:// github. com/ hushe ng123 45/
 SRAN) has the same hierarchical generator and generates wrong
answers differently. Each wrong answer generated by I-RAVEN
has a 50% chance of changing one of the attributes of the correct
answer and differs from the correct answer in more than one
attribute; thus, no answer bias exists.

The RAVEN-fair dataset [17] (https:// github. com/
yaniv benny/ RAVEN_ FAIR) also uses the same hierar-
chical generator and uses a different method to gener-
ate wrong answers. The algorithm generates one wrong
answer at a time. After generating the first wrong answer
by changing an attribute of the correct image, the algo-
rithm randomly selects one of the generated incorrect
or correct answers and changes one of the attributes of
the selected image to generate a new incorrect answer.
RAVEN-fair also has no answer bias.

β‑VAE Module

The sVAE module was developed from the public code
of the β-VAE module by Higgins [30]. The original code
of the β-VAE module is available at https:// github. com/
AntixK/ PyTor ch- VAE.

Comparison Algorithms

We ran PrAE [21] on the RAVEN-fair dataset. The model is
publicly available at https:// github. com/ Welly Zhang/ PrAE.

We ran Rel-base [19] on the I-RAVEN and RAVEN-fair
datasets. The model is publicly available at https:// github.
com/ SvenS hade/ Rel- AIR.

We ran MRNet [17] on the I-RAVEN dataset. The model
is publicly available at https:// github. com/ yaniv benny/
MRNet.

We ran SCL [20] on the RAVEN-fair dataset. The model
is publicly available at https:// github. com/ dhh19 95/ SCL.

We ran SRAN [16] on the RAVEN and RAVEN-fair data-
sets. The model is publicly available at https:// github. com/
hushe ng123 45/ SRAN.

The model architectures and model parameters used are
the same as those in the files.

Appendix 3. Training Details

FCNN Training Details

We trained the FCNN model on a CPU platform (Windows
11 64-bit; Intel(R) Core(TM) i3-10110U CPU @ 2.10 GHz
(4 CPUs)), and the model contains 4 convolutional layers
(16, 32, 64, and 128 latent dimensions, kernel size 5 * 5,
stride 1, padding 1) and a feedforward layer (16384 nodes).
We generated 959 problems per configuration to train the

https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
https://github.com/WellyZhang/RAVEN
https://github.com/WellyZhang/RAVEN
https://github.com/husheng12345/SRAN
https://github.com/husheng12345/SRAN
https://github.com/yanivbenny/RAVEN_FAIR
https://github.com/yanivbenny/RAVEN_FAIR
https://github.com/AntixK/PyTorch-VAE
https://github.com/AntixK/PyTorch-VAE
https://github.com/WellyZhang/PrAE
https://github.com/SvenShade/Rel-AIR
https://github.com/SvenShade/Rel-AIR
https://github.com/yanivbenny/MRNet
https://github.com/yanivbenny/MRNet
https://github.com/dhh1995/SCL
https://github.com/husheng12345/SRAN
https://github.com/husheng12345/SRAN

 Cognitive Computation

1 3

FCNN module. For each problem, the model takes the first
image as input and the configuration index of the problem
as the label (cross-validation). The model was trained for up
to 50 epochs and achieved 100% accuracy when classifying
the configurations of the images.

sVAE Training Details

We trained sVAE on the institute’s GPU platform (NVIDIA
SMI, 460.80; driver version, 460.80; CUDA version, 11.2).

Five hundred problems were generated for each con-
figuration to train and validate the sVAE module (approx-
imately 375 training problems and 125 validation prob-
lems). Each problem consists of 16 NumPy array figures
containing one or more objects. We segmented the figures
into individual object images according to the structural
organization of the figures. We used the cropped object
images and 1 * 29 vectors describing the objects’ meta-
information (type, size, color, and angle) obtained from
the corresponding problem xml file to train the sVAE mod-
ule. We trained one sVAE model for each configuration,
except for the O-IC and O-IG configurations, where we
trained two separate sVAE models for the “in” and “out”
configurations. The model was trained quickly, requiring
less than 5 min and 10 epochs to obtain acceptable results.
We trained the models up to the 100th epoch (or 50th epoch
for the out configurations) to obtain good reconstructions.

The model used four losses to train: the object recon-
struction loss, the latent variable reconstruction loss, the
supervised loss (difference between the semantic features
and the labels), and the regularization loss (divergence
between the distribution of the latent variables and the
assumed distribution). The supervised loss used the
smooth l1 loss, as in Eq. 3, while the other losses used the
mean squared loss (mse), as in Eq. 4:

We evaluated the performance of the sVAE model on
different training sample sizes (from 100 to 959 problem
object segments). The model achieved top perceptual accu-
racy within 300 training problems and accurately answered
RPM problems with human-designed cognitive maps. The
reported model was trained on 500 problems (see Table 7).

The model did not need to see all objects to reason
effectively. RAVEN contains 2400 objects. in this study,
we used only 240 to 2400 images corresponding to 240
to 2400 objects (one image per object) to train the model.
The performance is shown in Table 8.

(3)l1 =

�∑n

i=0
0.5 × (yi − f

�
xi
�
)
2
, �yi − f

�
xi
�
� < 1∑n

i=0
�yi − f

�
xi
�
� − 0.5, othervise

(4)L = (yi − f (xi))
2

sVAE Image Generation

sVAE can generate clear answer images for RPM prob-
lems. To generate an answer image, the algorithm first
generated object images according to object features and
then arranged them according to their predicted posi-
tions. There were two levels of prediction (panel-level and
object-level) for both object features and positions. We
first considered object-level position predictions, which
specify the attribute (feature or position) of a single object.
If there was no object-level prediction, we assigned attrib-
utes according to the panel-level predictions. The panel-
level predictions did not specify which value corresponded
to which object. Thus, the order of assignment was rand-
omized when we assigned values according to panel-level
positions. If there were no predictions at both levels, we
randomly assigned values to the attribute.

The semantic features in the sVAE altered the images
in an understandable way, but this result was not possible
with β-VAE (Fig. 17) [54].

Table 7 Model Perception and problem-solving performance for dif-
ferent sample sizes (number of object images)

Proportion of
samples

Number of image Perception
accuracy

I-RAVEN
accuracy

0.1 3445 0.9722 0.927
0.2 6891 0.9993 0.989
0.3 10,337 1.0 0.989
0.4 13,783 1.0 0.989
0.5 17,229 1.0 0.989
0.6 20,675 1.0 0.989
0.7 24,121 1.0 0.989
0.8 27,567 1.0 0.989
0.9 31,013 1.0 0.989
1.0 34,459 1.0 0.987

Table 8 Perception and problem-solving performance of the model
trained with different proportions of all 2400 objects

Proportion No. of images Val acc(all
images)

Perception
accuracy

RAVEN-
fair
accuracy

0.1 240 0.9258 0.0848 0.507
0.2 480 0.9609 0.2707 0.595
0.3 720 0.9961 0.5944 0.786
0.4 960 0.9844 0.6910 0.830
0.5 1200 0.9961 0.8362 0.843
0.6 1440 1.0 0.9221 0.903
0.7 1680 1.0 0.9555 0.933
0.8 1920 1.0 0.9828 0.973
0.9 2160 1.0 0.9936 0.990
1.0 2400 1.0 0.9996 0.994

Cognitive Computation

1 3

Cognitive Map Training Details

The cognitive map is trained on a CPU machine (Windows 10
64-bit Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz (12 CPUs)).

There are three types of feature maps: attribute feature
maps, 2 × 2 position feature maps, and 3 × 3 position feature
maps. Each type of cognitive map has two subtypes: 9 × 9
feature maps and 9 × 9 × 9 feature maps.

To build feature maps for feature vectors containing
attributes of the first eight panels and the answer panel,
we found categorical numerical relationships between two
(three) elements in the feature vectors. The position (a,b)
((a,b,c)) in the 9 × 9 (9 × 9 × 9) feature maps stores the cate-
gorical relationship between the ath element and the bth ele-
ment or among the ath, bth, and cth elements in the feature
vector. For attribute feature maps, the relationships in 9 × 9
feature maps are “ + 1,” “-9,” “ = ,” etc., while the relation-
ships in 9 × 9 × 9 feature maps are “a + b = c,” “a – b – 2 = c,”
etc. The relationships for 2 × 2 location feature maps and
3 × 3 location feature maps are different from those for
attribute feature maps. For example, “ + 1” defines a position
relationship where all objects move to the right and the last
object moves to the first. “a + b = c” means that the objects
in the third panel occupy all the positions occupied by the
first and second panels.

We generated 15,000 problems per configuration to train and
validate the CMRB (10,000 for training and 5000 for validation).
We used the “Center” configuration problems with 16 images per
problem, one object per image, and three attributes per object to
extract feature vectors and train the attribute feature maps. The
sVAE model was used to acquire attributes from objects and
construct feature vectors. A total of 30,000 feature vectors were
constructed for the 3 attributes of 10,000 training problems. We
provided additional candidate answers for attributes in the test
set. If the predicted attribute value is not in the candidates, we
allowed the algorithm to use other cognitive maps. The learned
cognitive maps can be generalized to other configurations. Simi-
larly, we used the positional information from 2 × 2 and 3 × 3
problems to train 2 × 2 and 3 × 3 positional feature maps.

We stored the acquired cognitive maps in each epoch (1000
training steps) and selected the best-performing model from
the training epochs based on the validation performance.
The model was trained quickly and reached 99.5% validation
accuracy in the 2nd training epoch with 2000 feature vectors
(approximately 700 problems). The model reached its best
performance (99.7%) in the 10th training epoch with 10,000
feature vectors (approximately 3000 problems). The perfor-
mance of position cognitive maps on problems with “position”
or “number/position” rules in the metadata was 1.0 (the meta-
data information about which problem has position relations is

Fig. 17 When we changed the
latent variables in the bottleneck
of β-VAE, the change in the
generated image was usually
unpredictable. The attributes
(shape, angle, and size) tended
to change together. Many
dimensions did not change
the image at all. Conversely,
when we changed the semantic
features in sVAE, the change
in the generated images was
predictable. For example, we
can change the shape of a tri-
angle from a triangle to a circle
(second row). Alternatively, we
can change its color from light
to dark (fourth row). We can
also create objects with these
semantic features (last row)

 Cognitive Computation

1 3

not available to the algorithms during training). The threshold
similarity score L0 for 9 × 9 feature maps and L1 for 9 × 9 × 9
feature maps are parameters for CMRB. The validation perfor-
mance of the model at different threshold similarity scores is
shown in Tables 7, 8, and 9. The parameters that led to the best
performance with the least number of cognitive maps (num-
bers in parentheses) were selected (italics).

LTM has a capacity of 30 for each subtype of feature
map and can store a maximum of 180 cognitive maps in
total. Finally, the best model generated 49 cognitive maps.
7 (9 × 9) + 8 (9 × 9 × 9) attribute feature maps, 7 + 17 2 × 2
position feature maps, and 6 + 4 3 × 3 position feature maps.
Many cognitive maps capture the underlying rules in RPM
problems. The algorithms also discover some rules that are
not considered in RPM problems. These maps can solve
some problems efficiently but can also lead to predictions
that differ from the data generator (Tables 11 and 12).

Cognitive maps reflect how algorithms see RPM problems.
In some cases, they see RPM problems differently than humans.
For example, the algorithms sometimes use the plus operation
in the position feature maps to solve cases where three different
positions have the same value. This view is logically correct, but
humans rarely see the problem this way. The algorithm usually
discovers relationships between nonadjacent panels, which is
unusual for humans This unusual behavior is similar to alphaGo,
which has produced some unusual strategies in the game of GO.

Model Testing

Using parameters from the trained FCNN and sVAE mod-
ules and cognitive maps from the CMRB module, we tested
the algorithms on 70,000 new problems (10,000 problems
per configuration), and the resulting performance is reported
in the main text (Fig. 18).

Appendix 4. Designed Cognitive Maps

We can draw a cognitive map by hand based on our under-
standing of the problem (i.e., Fig. 8) and represent it mathe-
matically: (1) we draw the structure and define nine variables
(× 1, × 2,… × 9) corresponding to the 9 positions in 3 by 3
matrices; and (2) we draw the edges and describe the edges
(relations between the 9 variables) in mathematical terms and
functions, i.e., × 2 = × 1 + n, × 3 = × 2 + n (n equals -9 to 9).

When given a new RPM problem, we fed its first 8 attrib-
ute values into the first 8 defined variables and observed
if the mathematical equations were satisfied. If they were
satisfied, we computed the 9th variable based on its relation-
ships to the other variables. The performance of the hand-
designed cognitive maps for 7 configurations in the RAVEN,
I-RAVEN, and RAVEN-fair datasets is shown in Table 10.

Appendix 5. Generalization Experiment
Datasets and Details

In the 3D-chairs dataset [39] (https:// www. di. ens. fr/ willow/
resea rch/ seein g3Dch airs/), we selected 20 types of chairs, 21
images per chair (image size, cropped to center 592; resize
256,256; channel no, 3) from left, right, front, and back angles
(4–6 images per angle, marginally different from each other),
and applied four types of transfigurations (zoom, stretch, shift,
and color change with 5, 5, 3, and 5 dimensions) to the images,
creating a dataset of 157,500 images (7875 per chair type) and
labels (documenting types, transfigurations, and angles).

For 3D face datasets [40] (https:// faces. dmi. unibas. ch/ bfm/
bfm20 19. html), we used the Basel face model to construct three-
dimensional faces with 53,490 3D vertices. Each vertex had three
position indices (x, y, z) describing the topological corresponding
position of the vertex and three color indices (r, g, b) describ-
ing its texture. A new face was generated by randomly sampling
from Gaussian distributions and determining the weight of the
first 199 shape principal components (the principal component
of the position indices) and the first 199 appearance principal
components (the principal component of the color indices). We
created a dataset of 25,000 images (image size, resize 256 × 256;
channel number, 3) and labels by taking a photo at the 60° left

Table 9 Performance of attribute feature maps at different similarity
thresholds

The italics highlight the selected best performing parameter

L1 = 1 L1 = 2 L1 = 3

L0 = 4 0.9737(7 + 6) 0.9953(7 + 8) 0.9768
L0 = 5 0.9737(7 + 6) 0.9853(7 + 6) 0.9752
L0 = 6 0.9761(7 + 6) 0.9944(7 + 7) 0.9841
L0 = 7 0.9761(7 + 6) 0.9944(7 + 7) 0.9805

Table 10 Performance of
2 × 2 position feature maps at
different similarity thresholds

The italics highlight the selected
best performing parameter

L1 = 1 L1 = 2

L0 = 2 1 (14 + 16) 1 (11 + 24)
L0 = 3 1 (7 + 17) 1 (7 + 25)
L0 = 4 1 (7 + 18) 1 (8 + 25)
L0 = 5 1 (7 + 18) 1 (7 + 25)

Table 11 Performance of 3 × 3 position feature maps at different sim-
ilarity thresholds

The italics highlight the selected best performing parameter

L1 = 1 L1 = 2 L1 = 3

L0 = 4 1 (6 + 4) 1 (6 + 4) 1 (6 + 3)
L0 = 5 1 (6 + 4) 1 (6 + 4) 1 (6 + 3)
L0 = 6 1 (6 + 4) 1 (6 + 4) 1 (6 + 3)
L0 = 7 1 (6 + 4) 1 (6 + 4) 1 (6 + 3)

https://www.di.ens.fr/willow/research/seeing3Dchairs/
https://www.di.ens.fr/willow/research/seeing3Dchairs/
https://faces.dmi.unibas.ch/bfm/bfm2019.html
https://faces.dmi.unibas.ch/bfm/bfm2019.html

Cognitive Computation

1 3

viewing angle for each constructed face and using the weight of
the first 25 shape and appearance components as labels.

The CelebA dataset [41] (http:// mmlab. ie. cuhk. edu. hk/
proje cts/ CelebA. html) contains 202,599 images (image size,
crop to center 148 resize 128 × 128; channel number, 3; ran-
dom horizontal flip) labeled with 40 binary attributes and
ten landmark locations. We also trained an active appear-
ance model (AAM, https:// www. menpo. org/ menpo fit/ aam.
html) to place 68 landmark point markers carrying shape
information of faces to acquire additional brain-like shape
and appearance labels. With the acquired shape information
from the landmark locations, we morphed the landmarks to
match the average landmark locations to produce images
carrying shape-free appearance information and projected
shape information and shape-free appearance onto 24 prin-
cipal components. The scores of the images on these shape
and appearance principal components, along with the 50
semantic labels from the dataset, were used to train the
model, resulting in 98-dimensional labels.

The LFW dataset [42] (http:// vis- www. cs. umass. edu/ lfw/)
contains 13,233 images (image size, crop to center 148 resize
128 × 128; channel number, 3; random horizontal flip) with
73-dimensional numerical labels. We generated an additional
48-dimensional brain-like shape and appearance labels using
the active appearance model as the CelebA dataset.

Funding This study was funded by NSFC (grant number 32171094).

Data Availability The datasets generated and/or analyzed during the
current study are available in the GitHub repository: https:// github.
com/ scien tific- lab/ Toward_ Intel ligent_ Seman tic_ Reaso ning_ on_
Raven-s_ Progr essive_ Matri ces. Other public resources related to this
work are listed in the Appendices.

Declarations

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

 1. Edward CT. Cognitive maps in rats and men. Psychol Rev.
1948;55(4):189–208.

 2. Whittington JC, McCaffary D, Bakermans JJ, Behrens TE. How to build
a cognitive map. Nat Neurosci. 2022;25(10):1257–72.

 3. O’keefe J, Nadel L. The hippocampus as a cognitive map.
Oxford university press; 1978.

 4. Whittington JC, Muller JC, Mark TH, Chen S, Barry G, Burgess
N, Behrens TE. The Tolman-Eichenbaum machine: unifying
space and relational memory through generalization in the hip-
pocampal formation. Cell. 2020;183(5):1249–63.

 5. Son JY, Bhandari A, FeldmanHall O. Cognitive maps of social
features enable flexible inference in social networks. Proc Natl
Acad Sci. 2021;39:128–118.

 6. Raven JC. Raven’s progressive matrices: western psychological
services Los Angeles CA. 1938.

 7. Bilker WB, Hansen JA, Brensinger CM, Richard J, Gur RE,
Gur RC. Development of abbreviated nine-item forms of
the raven’s standard progressive matrices test. Assessment.
2012;19(3):354–69.

 8. Raven JC, Court JH. Raven’s progressive matrices and vocabu-
lary scales, vol. 759. Oxford: Oxford pyschologists Press; 1998.

 9. Mitchell M. Abstraction and analogy-making in artificial intelligence.
Annals of the New York Academy of Sciences. 2021;1505(1):79–101.

 10. Małkiński M, Mańdziuk J. Deep Learning Methods for Abstract
Visual Reasoning: A Survey on Raven's Progressive Matrices.
arXiv preprint arXiv: 2201. 12382; 2022.

 11. Lovett A, Forbus K. Modeling visual problem solving as ana-
logical reasoning. Psychol Rev. 2017;124(1):60.

 12. Lovett A, Forbus K, Usher J. A structure-mapping model of
Raven’s Progressive Matrices. Proc Ann Meeting Cognit Sci Soc.
2010;32.

 13. Spearman C. General Intelligence. Objectively Determined and
Measured. 1961.

 14. Dai WZ, Xu QL, Yu Y, Zhou ZH. Tunneling neural perception
and logic reasoning through abductive learning. arXiv preprint
arXiv: 1802. 01173; 2018.

 15. Zhang C, Gao F, Jia B, Zhu Y, Zhu SC. Raven: a dataset for
relational and analogical visual reasoning. Proc IEEE/CVF Conf
Comput Vis Pattern Recognit. 2019;5317–27.

 16. Hu S, Ma Y, Liu X, Wei Y, Bai S. Stratified rule-aware net-
work for abstract visual reasoning. Proc AAAI Conf Artif Intell.
2021;35(2):1567–74.

Fig. 18 We can also draw cog-
nitive maps by hand and assign
relationships between panels as
shown above

Table 12 mean accuracy for the
model with designed cognitive
maps on RAVEN, I-RAVEN,
and RAVEN-Fair datasets

Config/datasets Center 2*2 3*3 O-IC O-IG L-R U-D average

RAVEN 0.9883 0.9912 0.9927 0.9916 0.8954 0.9899 0.9876 0.9767
I-RAVEN 0.9896 0.9885 0.9908 0.9943 0.9195 0.9934 0.9929 0.9813
RAVEN-fair 0.9921 0.9950 0.9957 0.9946 0.9531 0.9956 0.9942 0.9886

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.menpo.org/menpofit/aam.html
https://www.menpo.org/menpofit/aam.html
http://vis-www.cs.umass.edu/lfw/
https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
https://github.com/scientific-lab/Toward_Intelligent_Semantic_Reasoning_on_Raven-s_Progressive_Matrices
http://arxiv.org/abs/2201.12382
http://arxiv.org/abs/1802.01173

 Cognitive Computation

1 3

 17. Benny Y, Pekar N, Wolf L. Scale-localized abstract reason-
ing. Proc IEEE/CVF Conf Comput Vision Pattern Recognit.
2021;12557–65.

 18. Zhang C, Jia B, Gao F, Zhu Y, Lu H, Zhu SC. Learning perceptual
inference by contrasting. Adv Neural Inf Proc Syst. 2019;32.

 19. Spratley S, Ehinger K, Miller T. A closer look at generalisation in
raven. Eur Conf Comput Vision Springer. 2020;601–16.

 20. Wu Y, Dong H, Grosse R, Ba J. The scattering compositional
learner: discovering objects, attributes, relationships in analogi-
cal reasoning. arXiv preprint arXiv: 2007. 04212; 2020.

 21. Zhang C, Jia B, Zhu SC, Zhu Y. Abstract spatial-temporal rea-
soning via probabilistic abduction and execution. Proc IEEE/
CVF Conf Comput Vision Pattern Recognit. 2021;9736–46.

 22. Zhang C, Xie S, Jia B, Wu YN, Zhu SC, Zhu Y, Learning algebraic
representation for systematic generalization in abstract reasoning.
In Computer Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings,. Part XXXIX.
Cham: Springer Nature Switzerland; 2022. p. 692–709.

 23. Hua T, Kunda M. Modeling Gestalt visual reasoning on raven’s
progressive matrices using generative image Inpainting Tech-
niques. CogSci. 2020;2:7.

 24. Bourlard H, Kamp Y. Auto-association by multilayer per-
ceptrons and singular value decomposition. Biol Cybernet.
1988;59(4):291–4.

 25. Kramer MA. Nonlinear principal component analysis using autoas-
sociative neural networks. AIChE J. 1991;37(2):233–43.

 26. Kingma DP, Welling M. Auto-encoding variational bayes. arXiv
preprint arXiv: 1312. 6114; 2013.

 27. Yu S, Mo S, Ahn S, Shin J. Abstract reasoning via logic-guided
generation. ICML Workshop Self-Supervised Learning for Rea-
soning and Perception. 2021.

 28. Van Steenkiste S, Locatello F, Schmidhuber J, Bachem O. Are
disentangled representations helpful for abstract visual reasoning?
Adv Neural Inf Proc Syst. 2019.

 29. Pekar N, Benny Y, Wolf L. Generating correct answers for pro-
gressive matrices intelligence tests. Adv Neural Inf Proc Syst.
2020;7390–400.

 30. Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M,
et al. beta-vae: Learning basic visual concepts with a constrained
variational framework. Int Conf Learning Represent. 2017.

 31. Momennejad I, Russek EM, Cheong JH, Botvinick MM, Daw ND,
Gershman SJ. The successor representation in human reinforce-
ment learning. Nat Human Behaviour. 2017;680–92.

 32. Dayan P. Improving generalization for temporal difference learning:
the successor representation. Neural Comput. 1993;613–24.

 33. Todorov E. Linearly-solvable markov decision problems. Adv
Neural Inf Proc Syst. 2006.

 34. George D, Rikhye RV, Gothoskar N, Guntupalli JS, Dedieu A,
La´zaro-Gredilla M. Clone-structured graph representations ena-
ble flexible learning and vicarious evaluation of cognitive maps.
Nat Commun. 2021;12(1):1–17.

 35. Chen L. The topological approach to perceptual organization.
Visual Cognit. 2005;12(4):553–637.

 36. Steinberg J, Sompolinsky H. Associative memory of structured
knowledge bioRxiv. 2022.

 37. Patterson K, Nestor PJ, Rogers TT. Where do you know what you
know? The representation of semantic knowledge in the human
brain. Nat Rev Neurosci. 2017;8(12):976–87.

 38. Ma Y, Tsao D, Shum HY. On the principles of parsimony and self-
consistency for the emergence of intelligence. Front Inf Technol
Electr Eng. 2022;23(9):1298–323.

 39. Aubry M, Maturana D, Efros AA, Russell BC, Sivic J. Seeing 3d
chairs: exemplar part-based 2d–3d alignment using a large dataset
of cad models. Proc IEEE Conf Comput Vision Pattern Recognit.
2014;3762–9.

 40. Paysan P, Knothe R, Amberg B, Romdhani S, Vetter TA. 3D face
model for pose and illumination invariant face recognition. 2009
sixth IEEE Int Conf Adv Vid Signal Based Surv. 2009;296–301.

 41. Liu Z, Luo P, Wang X, Tang X. Deep learning face attributes in
the wild. Proc IEEE Int Conf Comput Vision. 2015;3730–8.

 42. Huang GB, Mattar M, Berg T, Learned-Miller E. Labeled faces
in the wild: A database for studying face recognition in uncon-
strained environments. Workshop Faces “Real-Life” Images:
Detect Align Recognit. 2008.

 43. Almudhahka NY, Nixon MS, Hare JS. Semantic face signatures: Rec-
ognizing and retrieving faces by verbal descriptions. IEEE Transact
Inf Forensics Sec. 2017;13(3):706–16.

 44. Tschechne S, Neumann H. Hierarchical representation of shapes
in visual cortex—from localized features to figural shape segrega-
tion. Front Comput Neurosc. 2014;93.

 45. Sato T, Uchida G, Lescroart MD, Kitazono J, Okada M, Tanifuji M.
Object representation in inferior temporal cortex is organized hierarchi-
cally in a mosaic-like structure. J Neurosci. 2013;33(42):16642–56.

 46. Prabhakaran V, Smith JA, Desmond JE, Glover GH, Gabrieli JD.
Neural substrates of fluid reasoning: an fmri study of neocortical
activation during performance of the raven’s progressive matrices
test. Cognit Psychol. 1997;33(1):43–63.

 47. Melrose RJ, Poulin RM, Stern CE. An fmri investigation of the role
of the basal ganglia in reasoning. Brain Res. 2007;146–58.

 48. Hersche M, Zeqiri M, Benini L, Sebastian A, Rahimi A. A neurovector-
symbolic architecture for solving raven’s progressive matrices. arXiv
preprint arXiv: 2203. 04571; 2022.

 49. Wang D, Jamnik M, Lio P. Abstract diagrammatic reasoning with
multiplex graph networks. arXiv preprint arXiv: 2006. 11197; 2020.

 50. Kim H, Mnih A. Disentangling by factorizing. Int Conf Machine
Learning. 2018;2649–58.

 51. Chen RT, Li X, Grosse RB, Duvenaud DK. Isolating sources of
disentanglement in variational autoencoders. Adv Neural Inf Proc
Syst. 2018;31.

 52. Chang L, Tsao DY. The code for facial identity in the primate
brain. Cell. 2017;169(6):1013–28.

 53. Chang L, Egger B, Vetter T, Tsao DY. Explaining face representa-
tion in the primate brain using different computational models.
Curr Biol. 2021;31(13):2785–95.

 54. Zhang Z, Song Y, Qi H. Age progression/regression by conditional
adversarial autoencoder. Proc IEEE Conf Comput Vision Pattern
Recognit. 2017;5810–8.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/2007.04212
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2203.04571
http://arxiv.org/abs/2006.11197

	An Interpretable Neuro-symbolic Model for Raven’s Progressive Matrices Reasoning
	Abstract
	Introduction
	Related Works
	Psychological Model for Solving RPM Problems
	Variational Autoencoders
	Cognitive Maps

	Purpose of This Study

	Methods: the Neuro-symbolic sVAE-CMRB Model
	Model Overview
	Structural Organization Perception FCNN-Network
	Semantic VAE Feature Extraction Module
	Cognitive Map Reasoning Back-end

	Result
	Baselines
	Result for the Semantic-VAE Module
	Results for the Cognitive Map Module
	Primary Results
	Mistakes

	Discussion
	Models' Innovations
	Generalization
	Neural Basis of Reasoning in RPM
	Limitations and Future Work

	Conclusion
	Appendix 1. Code
	Appendix 2. Datasets, Models, and Other Resources
	Datasets
	β-VAE Module
	Comparison Algorithms

	Appendix 3. Training Details
	FCNN Training Details
	sVAE Training Details
	sVAE Image Generation
	Cognitive Map Training Details
	Model Testing

	Appendix 4. Designed Cognitive Maps
	Appendix 5. Generalization Experiment Datasets and Details
	References

