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Abstract Previous studies on reinforcement learning have identified three prominent 
phenomena: (1) individuals with anxiety or depression exhibit a reduced learning rate compared to 
healthy subjects; (2) learning rates may increase or decrease in environments with rapidly changing 
(i.e. volatile) or stable feedback conditions, a phenomenon termed learning rate adaptation; and 
(3) reduced learning rate adaptation is associated with several psychiatric disorders. In other words, 
multiple learning rate parameters are needed to account for behavioral differences across partici-
pant populations and volatility contexts in this flexible learning rate (FLR) model. Here, we propose 
an alternative explanation, suggesting that behavioral variation across participant populations 
and volatile contexts arises from the use of mixed decision strategies. To test this hypothesis, we 
constructed a mixture-of-strategies (MOS) model and used it to analyze the behaviors of 54 healthy 
controls and 32 patients with anxiety and depression in volatile reversal learning tasks. Compared 
to the FLR model, the MOS model can reproduce the three classic phenomena by using a single set 
of strategy preference parameters without introducing any learning rate differences. In addition, the 
MOS model can successfully account for several novel behavioral patterns that cannot be explained 
by the FLR model. Preferences for different strategies also predict individual variations in symptom 
severity. These findings underscore the importance of considering mixed strategy use in human 
learning and decision-making and suggest atypical strategy preference as a potential mechanism for 
learning deficits in psychiatric disorders.

eLife assessment
This study provides a novel and valuable alternative explanation for volatility-induced changes in 
choice behavior, commonly attributed to learning-rate adaptations. Through rigorous and compre-
hensive computational modeling of previously published data, the authors provide convincing 
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support for the claim that apparent learning-rate adaptations may instead reflect a mixture of deci-
sion strategies. Furthermore, they demonstrate that differential weighting of the optimal decision 
strategy is predicted by psychopathology common to depression and anxiety. This work should be 
of interest to a wide range of scientists, including psychologists, neuroscientists, computer scientists, 
and clinicians.

Introduction
Intelligent behavior requires the ability to adapt to an ever-changing environment. For example, 
foraging animals must be able to track the changing abundance or scarcity of food resources in 
different locations and at different timescales. Motor control demands the ability to control limbs 
that constantly vary in their dynamics (due to fatigue, injury, growth, etc.). Human competitors in all 
kinds of games or sports must be able to learn and adapt to their opponents’ changing strategies. To 
understand the mechanisms of these abilities, researchers have examined how (and how well) human 
agents can learn option values and track the dynamic changes in values in a volatile reversal learning 
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Figure 1. Schematic diagram of the experimental task in Gagne et al., 2020. (A) In each trial, participants were presented with two stimuli associated 
with their potential feedback magnitude. They were instructed to choose one of the two stimuli to receive feedback, but only one stimulus would result 
in feedback. Participants were required to complete tasks across four experimental contexts. (B) Each run consisted of 90 trials in the stable context and 
90 trials in the volatile context. In the stable context, the true environmental probability remains unchanged, while in the volatile context, the probability 
flips every 20 trials.
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task (Behrens et al., 2007). Unlike the traditional probabilistic reversal learning task where the reward 
probabilities of two options switch only once (Cools et al., 2002), this paradigm includes two volatility 
conditions (see Figure 1B): the reward probabilities of the two options remain constant in one condi-
tion (i.e. the stable condition) and switch periodically in the other (i.e. the volatile condition).

Previous studies have often summarized human behaviors in this paradigm using the parameter 
of learning rate, which describes the efficiency with which current information is used to promote 
learning. These studies typically fit a specific learning rate to each context, resulting in different 
learning rate values for different contexts. Using this method, previous studies have reached two 
important conclusions. First, human participants are able to flexibly adapt to changes in environmental 
volatility, as evidenced by increasing and decreasing the learning rate in response to volatile and 
stable conditions. This observation is often referred to as the learning rate adaptation effect. Second, 
individuals with several psychiatric disorders, including anxiety and depression, have been found to 
have a reduced ability to adapt their learning rate in response to environmental volatility (Behrens 
et al., 2007; Browning et al., 2015; Gagne et al., 2020). This hallmark can also be indicative of 
atypical behaviors (Browning et al., 2015; Gagne et al., 2020), psychosis (Powers et al., 2017), and 
autism spectrum disorder (Lawson et al., 2017).

However, the current approach to understanding human behaviors using learning rates has two 
main limitations. First, the traditional approach increases the number of learning rates as the number 
of contexts increases, thereby increasing the risk of overfitting. Second, this approach implicitly 
assumes that learning rate differences can account for all behavioral differences between stable/
volatile rewarding contexts and group differences between healthy controls and patients with psychi-
atric disorders. However, the learning rate is not directly observable and is often estimated by model 
fitting, which limits its interpretability. The goal of this work is to offer an alternative explanation for 
human learning behaviors in volatile reversal learning tasks, moving beyond the traditional focus on 
learning rates. We hypothesize that the differences between stable/volatile contexts and between 
healthy/patient groups mainly arise from preferences for different decision strategies (Daw et al., 
2011; Fan et al., 2023). We, therefore, constructed a novel MOS model, which postulates that an 
observer makes decisions by combining three strategies that balance reward and cognitive resources 
(Gershman et  al., 2015; Griffiths et  al., 2015). First, we consider the most rewarding strategy, 
Expected Utility (EU), which guides decision-making based on the expected utility of each option 
(calculated as probability multiplied by reward magnitude) (Von and Morgenstern, 1947). This EU 
strategy yields the maximum amount of reward, but the utility calculation itself consumes consider-
able cognitive resources. Alternatively, humans may choose simpler strategies, e.g., the magnitude-
oriented (MO) strategy, in which only the reward magnitude was considered during the decision 
process, and the habitual (HA) strategy, in which people simply repeat decisions frequently made in 
the past regardless of reward magnitude (Wood and Rünger, 2016). We use the preference for these 
decision strategies to roughly estimate participants’ decision styles in the volatile reversal task.

In this study, we apply and examine the MOS model on a dataset previously reported by Gagne 
et  al., 2020 and demonstrate its ability to explain the impaired learning behaviors of individuals 
diagnosed with depression and anxiety. First, we show that depression and anxiety patients exhibit 
three signature behavioral patterns indicative of inferior task performance. The MOS model not only 
qualitatively captures all three behavioral patterns but also quantitatively provides a better fit to the 
behavioral data than previous models. We then revisit the classical learning rate adaptation theory and 
show that strategy preference readily accounts for two key learning rate adaptation effects observed 
in prior research. Our work presents an alternative explanation for the effects of environmental vola-
tility on human learning and highlights the importance of understanding atypical patient behaviors 
through the lens of decision-making strategies rather than solely focusing on learning rate.

Results
We examined human volatile reversal learning behaviors in a public data set reported by Gagne et al., 
2020. In a volatile reversal learning task, participants chose between two shaped stimuli to receive 
feedback. Participants received the presented feedback (e.g. ‘27’ on the ‘square’) when choosing the 
feedback stimulus; otherwise, they received ‘0’ (Figure 1A). The task was divided into four contexts: 
reward or aversive feedback types crossed with stable or volatile conditions. Participants earned 
points, which were convertible to monetary rewards, in the reward context or received electric shocks 
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in the aversive context. In stable, one stimulus had a higher fixed feedback probability (always 75%), 
while in volatile, the dominant stimulus switched every 20 trials (either 20% or 80%), requiring active 
learning of stimulus-feedback contingencies (Figure 1B). Each participant was instructed to complete 
two runs of the volatile reversal learning task, one in the reward context and the other in the aversive 
context. Each run consisted of 180 trials, with 90 trials in the stable context and 90 in the volatile 
context (Figure  1B). No additional hints were provided about the transition from one context to 
another; therefore, participants needed to infer the current context on their own.

Eighty-six participants took part in this experiment, comprising 20patients with major depressive 
disorder (MDD), 12patients with generalized anxiety disorder (GAD), and 54 healthy control partici-
pants. In this article, we grouped the MDD and GAD individuals into a patient group and the remaining 
54 participants into a healthy control group. Please refer to the Materials and methods section for a 
more detailed introduction to the methods and participant groups.

Atypical behavioral patterns in MDD and GAD patients
Patients with MDD and GAD exhibit three key behavioral patterns as compared to healthy controls. 
First, patients achieved a significantly lower hit rate (averaged across stable and volatile contexts) as 
compared to the healthy controls (Figure 2A; t(70.541) = 3.326, p = 0.001, Cohen’s d = 0.723). The 
hit rate refers to the accuracy of a participant in choosing the correct stimulus throughout the task. 
Specifically, the correct stimulus is the one that yields reward points in the reward context or avoids 
electric shocks in the aversive context.
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Figure 2. Task performance comparison between healthy control participants and patients diagnosed with major depressive disorder (MDD) and 
generalized anxiety disorder (GAD). Significance symbols: *p<0.05; **p<0.01; ***p<0.001; n.s.: non-significant. Abbreviations: HC, healthy controls; 
PAT, patients. (A) Comparison of hit rates for healthy controls and patients in stable and volatile contexts. Error bars represent the standard deviation 
of the estimated mean across 86 participants. (B) Learning curves for healthy controls and patients throughout the learning process. The dashed 
line represents the exemplar feedback probability sequence. For runs that do not follow this exemplar sequence (e.g. starting with volatile and then 
moving to stable conditions), responses were converted to match the exemplar sequence. The learning curves for both groups were then generated by 
averaging these converted responses across participants within each group. For better visualization, these curves were then smoothed using a Gaussian 
kernel with a standard deviation of two trials. The blue arrows indicate the apparent deviation between the true feedback probability and the patients’ 
asymptotic performance. (C) Hit rate differences for healthy controls and patients and their relationship with participants’ symptom severities. Error bars 
represent the standard deviation of the estimated mean across 54 healthy controls and 32 patients, respectively.
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Second, we observed two atypical features of learning curves in the patient group (Figure 2B). The 
patients’ learning curves took more trials to converge to an asymptote (i.e. seemingly slower learning). 
Additionally, there was a larger apparent deviation (Figure 2B, blue arrows) from the true feedback 
probability. The apparent deviation indicates that the learning curve of the patient group could never 
converge to the true feedback probability, even given a sufficient number of trials in a stable context.

Third, aside from the lower learning rate and atypical learning curves that indicate inferior perfor-
mance in the patient group, we further discovered a reduced hit rate difference within the patient 
group (Figure 2 and t(55.648) = 2.038, p = 0.046, Cohen’s d = 0.478). Interestingly, this hit rate differ-
ence is marginally associated with the severity of participants’ symptoms (r(86) = –0.194, p = 0.074), 
as measured using the bifactor analysis reported in Gagne et al., 2020. This analysis decomposes 
symptoms into specific factors for anxiety and depression, with the g-score representing the common 
symptoms between them. The hit rate difference across volatile/stable contexts may be due to the 
setting of true probability (0.8 in the volatile context and 0.75 in the stable context).

The mixture-of-strategies model captures group differences in learning 
behaviors
In a volatile reversal learning task, each participant in the experiment faces two fundamental chal-
lenges. First, they must engage in decision-making, constructing a policy ‍π‍ to determine an action 
that maximizes benefit. Second, they must learn to figure out the feedback probability ‍ψ‍ for each stim-
ulus, which is not explicitly stated, through their interactions with the environment. To gain insights 
into how cognitive impairments lead to the above-mentioned atypical behaviors in the patient group, 
we developed four families of computational models. All models utilize the same reinforcement 
learning method for learning feedback probability ‍ψ‍ but differ in how they construct their policies ‍π‍ 
for decision-making.

Our target model family, known as MOS, posits that behavioral differences across the two partici-
pant groups and between stable/volatile contexts can be attributed to varying weightings of multiple 
decision strategies: EU, MO, and HA

	﻿‍ π
(
s | ψ, m,πHA

)
= wEUπEU

(
s | ψ, m

)
+ wMOπMO

(
s | m

)
+ wHAπHA

(
s
)
‍�

This particular three-strategy configuration was chosen as the representative model because it 
best accounts for human behavioral data (Figure 3—figure supplement 1). The EU strategy (‍πEU‍) 
postulates that human agents rationally calculate the value of each stimulus ‍s‍ by multiplying its esti-
mated feedback probability ‍ψ‍ with reward magnitude ‍m‍. The MO strategy (‍πMO‍) only focuses on 
feedback magnitude ‍m‍, disregarding feedback probability ‍ψ‍. This is certainly an irrational strategy but 
more economical in terms of cognitive efforts. The HA strategy (‍πHA‍) reflects the tendency to repeat 
previous frequent choices, depending on neither feedback magnitude ‍m‍ nor feedback probability ‍ψ.‍ 
Parameters ‍wEU‍, ‍wMO‍, and ‍wHA‍ are the weighting of each strategy representing a decision-maker’s 
preference for each strategy. We fit two MOS variants, MOS6 and MOS22. Both models have identical 

Table 1. Model’s parameters.

Model Context-free parameters Context-dependent parameters

MOS6 ‍β,αHA,αψ , wEU, wMO, wHA‍

MOS22 ‍β,αHA‍ ‍αψ+,αψ−, wEU, wMO, wHA‍

FLR6 ‍αHA, r,βHA,αψ ,β,λ‍

FLR22 ‍αHA, r ‍ ‍βHA,αψ+,αψ−,β,λ‍

RS3 ‍β,αψ , γ ‍

RS13 ‍β‍ ‍αψ+,αψ−, γ ‍

PH4 ‍α
0
ψ , k, η,β‍

PH17 ‍α
0
ψ‍ ‍k+, k−, η, γ ‍

https://doi.org/10.7554/eLife.93887
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update rules; however, MOS22, the context-dependent variant, fits a separate set of parameters to 
each experimental context, whereas MOS6, the context-free variant, uses one set of parameters for all 
contexts (Table 1). This approach applies to the other three model families, each offering two distinct 
variants.

In contrast to the mixture-of-strategies account, the Flexible-Learning-Rate (FLR) models—the 
context-free FLR6 and the context-dependent FLR22—hypothesize that behavioral differences 
between groups and contexts primarily arise from different learning rates, known as learning rate 
adaptation. These models, reported as the best models by Gagne et al., 2020, select stimuli with 
higher values, estimated by a linear combination of differences in feedback probability, (non-linear) 
feedback magnitude, and the stimuli’s consistency with habitual behaviors. The Risk-Sensitive (RS) 
models (RS3 and RS13), adopted from Behrens et al., 2007 and Browning et al., 2015, share the 
same hypothesis about human behavioral differences. These models use the EU strategy for decision-
making and consider a subjective distortion of the learned feedback probability when calculating 
the expected value. To further investigate the hypothesis regarding differences in learning rates, we 
tested a family of models with a built-in adaptive learning rate, known as the Pearce-Hall models (PH4, 
PH17). See the Materials and methods section for the detailed model implementations.

The model fitting reveals that the MOS models accurately account for human behaviors. MOS6 and 
MOS22 were the best-fitting models in terms of the Bayesian Information Criterion (BIC; Schwarz, 
1978) and Akaike Information Criterion (AIC; Akaike, 1974), respectively (Figure 3A). The group-level 
Bayesian model comparison (Rigoux et al., 2014) further supports MOS6 as the best-fitting model 
(Figure 3B). These model comparisons highlight that the MOS models outperform the other three 
families of models supporting the learning adaptation account, suggesting that behavioral variations 
might not be fully captured by learning rate adaptations alone.

The MOS models can not only better capture the data quantitatively, but they can also effectively 
reproduce the three key behavioral differences between the groups. The MOS models reproduce the 
lower hit rate (Figure 3C), reduced hit rate difference (Figure 3D), and slower learning curves with 
apparent deviations (Figure 3E) observed in the patient group, whereas the FLR models struggle to 
produce all these effects. See Figure 3—figure supplements 2–3 for the behavioral patterns for all 
models.

In short, we conclude that the MOS models best account for human behavioral data both qualita-
tively and quantitatively. In the following sections, we will analyze the fitted parameters of the MOS 
models to interpret the atypical behavioral patterns of the patient group.

MDD and GAD patients favor simpler decision strategies
We first focused on the fitted parameters of the MOS6 model. We compared the weight parameters 
(‍wEU‍, ‍wMO‍, ‍wHA‍) across groups and conducted statistical tests on their logits (‍λEU‍, ‍λMO‍, ‍λHA‍). The 
patient group showed a ~37% preference towards the EU strategy, which is significantly weaker than 
the ~50% preference in healthy controls (healthy controls’ ‍λ‍: M = 0.991, SD = 1.416; patients’ ‍λ‍: M 
= 0.196, SD = 1.736; t(54.948) = 2.162, p = 0.035, Cohen’s d = 0.509; Figure 4A). Meanwhile, the 
patients exhibited a weaker preference (~27%) for the HA strategy compared to healthy controls 
(~36%) (healthy controls’ ‍λ‍: M = 0.657, SD = 1.313; patients’ ‍λ‍: M = –0.162, SD = 1.561; t(56.311) = 
2.455, p = 0.017, Cohen’s d = 0.574), but a stronger preference for the MO strategy (14% vs 36%; 
healthy controls’ ‍λ‍: M = –1.647, SD = 1.930; patients’ ‍λ‍: M = –0.034, SD = 2.091; t(63.746) = –3.510, 
p = 0.001, Cohen’s d = 0.801). Most importantly, we also examined the learning rate parameter in the 
MOS6 but found no group differences (t(68.692) = 0.690, p = 0.493, Cohen’s d = 0.151). These results 
strongly suggest that the differences in decision strategy preferences can account for the learning 
behaviors in the two groups without necessitating any differences in learning rate per se.

The MOS6 assumes no parameter differences across the four contexts, which may dilute the group 
differences in learning rate. We further analyzed the MOS22, which explicitly estimates different sets 
of weighting and learning rate parameters in different contexts (i.e. context-dependent), and found 
a consistent conclusion about participants’ strategy preferences. We first conducted three separate 
2 × 2 × 2 ANOVAs, each setting the logit of a weighting parameter (‍λEU,λMO,λHA‍) as the depen-
dent variable, and participant groups (healthy control/patient) as the between-subject variable, and 
volatile contexts (stable/volatile), and feedback contexts (reward/aversive) as within-subject variables. 
We again found a weaker preference for EU (F(1, 80) = 13.537, p<0.001, ƞ2 = 0.084) and a stronger 

https://doi.org/10.7554/eLife.93887
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Figure 3. Models’ quantitative and qualitative fit to human behavioral data. Significance symbols: *p<0.05; **p<0.01; ***p<0.001; n.s.: non-significant. 
Abbreviations: HC, healthy controls; PAT, patients. (A) Relative performance of models compared to the MOS6 model, as measured by the Akaike 
Information Criterion (AIC), and Bayesian Information Criterion (BIC). Each dot represents a model’s fit for an individual participant, with error bars 
showing the standard deviation of the estimated mean across 86 participants. (B) Group-level Bayesian model selection as indicated by Protected 
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preference for MO (F(1, 80) = 7.791, p = 0.009, ƞ2 = 0.046) in the patient group (Figure 4—figure 
supplement 1A). However, unlike the MOS6, the MOS22 revealed no significant group difference 
was observed in the HA strategy (F(1, 80) = 0.020, p = 0.887, ƞ2<0.001), and a significantly a stronger 
preference for EU under the reward context Bonferroni-t = 2.243, p = 0.028, Cohen’s d = 0.209. This 
suggests a possible confounding between the EU and HA strategies. Next, we examined the learning 
rates of the MOS22. A 2 × 2 × 2 × 2 ANOVA was performed with the (log) learning rate param-
eter as the dependent variable, outcome valence (better/worse than expectation) as a within-subject 
variable in addition to the three independent variables (group/volatile context/feedback context) as 
introduced above. We again found no significant difference between patients and healthy controls 
(F(1, 77) = 0.393, p = 0.533, ƞ2 = 0.003; Figure 4—figure supplement 1B). Most importantly, the 
MOS22 model revealed no learning rate adaptation effect, as indicated by the learning rate param-
eters in the volatile context not being significantly larger than that in the stable context (F(1, 77) = 
0.126, p = 0.724, ƞ2<0.001; Figure 4—figure supplement 1C). Based on these findings, we drew two 
conclusions. First, MOS6 and MOS22 made consistent descriptions of participants’ strategy prefer-
ences during decisions: the behavioral differences between the two participant groups were mainly 
attributed to differences in their strategy preferences, rather than their learning rates. Second, the 
learning rate adaptation effect may be simply explained by context-free strategy preferences. We will 
further explain this second point in later sections.

Understanding patients’ inferior task performances through strategy 
preferences
In this section, we illustrate how strategy preferences account for the three learning behavioral differ-
ences observed between the two participant groups, as shown in Figure 2. To better understand how 
each decision strategy influences the three behavioral patterns, we simulated the MOS6 model using 
the median fitted parameters and outputted the decisions for each strategy (see Simulation details in 
Materials and methods).

For hit rate, our simulations showed that the EU strategy achieved the highest hit rate, while 
the MO strategy basically performed at the chancel-level (Figure 4B). These results are intuitively 
understandable. Since the hit rate is defined based on feedback probability, the EU strategy, which 
actively tracks this probability, should be able to achieve a high hit rate. In contrast, the MO strategy, 
which completely ignores feedback probability, should achieve a chance-level hit rate. Interestingly, 
our simulations also showed that the HA strategy achieved an above-chance hit rate. This is because, 
although the HA strategy appears not to consider feedback probability directly, it still somewhat tracks 
feedback probability by simply repeating the past choices made by the EU. Accordingly, assigning 
lower weights to the two higher-hit-rate strategies, EU and HA (i.e. higher weighting on MO), naturally 
leads to inferior performance in the patients (Figure 2A).

We also visualized the simulated learning curves for each strategy (averaged across the two groups) 
throughout the task (Figure 4C). In both stable and volatile contexts, the EU strategy quickly approxi-
mates and converges to the true feedback probability. The HA strategy takes more trials to approach 
the true feedback probability, exhibiting slower learning. The MO strategy does not respond to envi-
ronmental feedback, resulting in an almost flat learning curve. When the learning curves are combined 
separately for the two groups, we recover the seemingly slower learning curve in the patient group 
due to their stronger preference for the MO strategy (Figure 4E). We also noted the larger apparent 
deviation from the true feedback probability in the patient group. These two features in Figure 2B 

Exceedance Probability (PXP). (C–E) Models' predicted hit rate (C) hit rate differences (D) and learning curves (E) for healthy controls and patients, 
respectively. Error bars denote the standard deviation of the estimated mean across 54 healthy controls and 32 patients, respectively.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The fit to the human data of different mixture-of-strategies (MOS) variants.

Figure supplement 2. Hit rates (A) and hit rate differences (B) for all models.

Figure supplement 3. Simulated learning curves for the healthy control (HC) and patient (PAT) groups, each averaged from 100 simulations within the 
group and were smoothed with a Gaussian kernel (standard deviation of two trials).

Figure 3 continued
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can thus be readily explained by the patients’ stronger preference for the MO strategy, as the MO 
strategy does not learn feedback probability at all and exhibits a flat learning curve.

For the hit rate differences between the stable and volatile contexts, our simulations showed that 
the EU strategy achieves a higher hit rate in the volatile context than in the stable context (i.e. positive 
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Parameter analyses of the MOS22 model.
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hit rate difference) (Figure 4D). This is attributed to the EU strategy’s active tracking of feedback 
probability (i.e. the maximum possible hit rate), which increases from 75% in the stable context to 
80% in the volatile context. Conversely, there were no changes in the MO strategy’s hit rate from the 
stable to volatile contexts (i.e. 0 hit rate difference) because MO does not track feedback probability. 
Additionally, we found that the hit rate of the HA strategy was higher in the stable context than in the 
volatile (i.e. negative hit rate difference). This is possibly because the HA strategy requires more time 
to relearn true probability (Figure 4C), particularly in the volatile context where the true probability 
frequently flips. Based on this, we can roughly estimate the hit rate difference for the healthy control 
group as~0.042 (‍̄w

HC
EU × 0.3 + w̄HC

MO × 0 + w̄HC
HA ×−0.3 = 0.5 × 0.3 + 0 + 0.36 ×−0.3‍) and for the patient 

group as~0.030 (‍̄w
PAT
EU × 0.3 + w̄PAT

MO × 0 + w̄PAT
HA ×−0.3 = 0.37 × 0.3 + 0 + .27 ×−0.3‍). This explains why 

healthy controls exhibited slightly a larger hit rate difference than the patient participants (Figure 2C).

Atypical strategy preferences are connected to the general severity of 
anxiety and depression
We investigated the relationship between strategy preferences in the MOS6 model and symptom 
severity in the patient group (Figure 5). Our findings indicate that patients with severe symptoms 
exhibit a weaker preference for the cognitively demanding EU strategy (Pearson’s r = –0.221, p = 
0.040) and a stronger preference for the simpler MO strategy (Pearson’s r = 0.360, p = 0.001). Addi-
tionally, there was a significant correlation between symptom severity and the preference for the 
HA strategy (Pearson’s r = –0.285, p = 0.007). These results highlight the strong clinical relevance of 
strategy preferences.

For completeness, we examined the correlation between learning rate adaptation (log volatile 
learning rate – log stable learning rate) and symptom severity within the MOS22 model (Figure 5—
figure supplement 1). Not surprisingly, we found no significant correlation (r(86) = 0.130, p = 0.233), 
which is consistent with our finding of no difference in learning rates across the two volatile contexts.

Strategy preferences may explain the learning rate differences across 
groups and contexts
Previous studies using probabilistic reversal learning tasks have made three major conclusions about 
learning rate. First, it has been documented that individuals with anxiety and depression have a 
smaller learning rate parameter (Chen et al., 2015; Pike and Robinson, 2022), thereby exhibiting a 
slower learning curve (Figure 2C) and, possibly, a lower hit rate (Figure 2A). Second, human partic-
ipants have been found to be able to flexibly increase their learning rate in response to high envi-
ronmental volatility (Behrens et al., 2007). Third, patient participants may exhibit a deficit in such 
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The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Strategy preferences predict participants' general factor score (g score) in the bifactor analysis reported by Gagne et al., 2020.
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learning rate adaptation (Browning et al., 2015; Gagne et al., 2020), exhibiting a lesser extent of 
increase (Figure 2B).

However, we recognize two limitations in this learning rate interpretation. First, a higher learning 
rate does not necessarily improve the hit rate; it may lead to overreacting to feedback from stimuli 
with low probabilities. Second, and more importantly, a reduced learning rate merely prolongs the 
time needed to approach the true probability (Boyd and Vandenberghe, 2004) but cannot explain 
the apparent deviation from the true probability observed in patient participants (Figure  2B). In 
contrast, a mixture of strategies can naturally account for these two phenomena. As mentioned in the 
previous section, the mixture of EU and MO results in both a seemingly lower learning curve and a 
larger apparent deviation.

Here, we further demonstrate that the behavioral differences caused by a mixture of strategies 
could reflect the learning rate adaptation across the stable and volatile contexts. We used the MOS6 
to synthesize behavioral data for agents resembling healthy controls and patients by controlling all 
parameters except for the decision weights. Specifically, we set the weights of ‍wEU‍ to 60%, ‍wMO‍ to 
15% and ‍wHA‍ to 25% for the healthy control group, and the weights of ‍wEU‍ to 15%, ‍wMO‍ to 60% 
and ‍wHA‍ to 25% for the patient group, with all other parameters fixed to the median values across 
all participants (see more details in Materials and methods). We simulated each group 20 times, and 
the simulated data reproduced the slower learning curve and the apparent difference in the patient 
group (Figure 6A). We fit the simulated data generated by MOS6 with the FLR22 model and found 
significant differences in the (log) learning rate between stable and volatile contexts (paired t-test(39 
) = –3.217, p = 0.003, Cohen’s d = 0.721; Figure 6B). Furthermore, the agent resembling the patient 
group demonstrated a trend toward reduced learning rate adaptation compared to the agent resem-
bling the healthy control group (Figure 6C), consistent with the learning rate adaptation theory. These 
findings suggest that what might be perceived as learning rate adaptation could result from a mixture 
of strategy preferences. This observation also implies that strategy preferences may, at least partially, 
explain the maladaptive adaptations in learning rate observed in patients in response to environ-
mental volatility.

Model and parameter recovery analyses support model and parameter 
identifiability in MOS
Although we have previously demonstrated that the MOS models are quantitatively best-fitting, there 
are two potential confounding factors. First, it is possible that differences in learning rate, rather than 
differences in strategy preference, could produce the same behavioral outcomes that are indistin-
guishable by the model fitting. If this holds, the MOS model might be problematic, as all learning 
rate differences may be automatically attributed to strategy preferences because of some unknown 
idiosyncratic model fitting mechanisms. Second, the fact that the MOS models outperform the others 
may be partly due to an unknown bias in the model design. It is possible that the MOS models always 
win, irrespective of how the data is generated.

To circumvent these issues, we conducted parameter recovery analyses on MOS6 and model 
recovery analyses on all models to investigate the identifiability of true parameters and models. For 
parameter recovery, we generated 80 synthetic datasets using 80 different parameter sets, each 
varying the four parameters of interest ‍

{
αψ ,λEU,λMO,λHA

}
‍, with the remaining parameters fixed to 

the median of the fitted parameters (‍β‍ = 10.803, ‍αHA‍ = 0.423). Each synthetic dataset consisted of 10 
runs, resulting in a total of 800 synthetic runs (80 parameter sets × 10 runs). For each dataset, we fitted 
our MOS6 model and compared the fitted parameters to the ground-truth parameters. The param-
eter recovery results (Figure 7A) demonstrate that the true parameters can be accurately estimated 
and identified (all Pearson’s rs >0.720), indicating that the effects of learning rate and weighting 
parameters are not interchangeable in the MOS6 model.

For model recovery, we sampled 40 participants (20 in each group) and used their fitted model 
parameters to generate synthetic datasets from each of the eight models. For each participant, we 
simulated 10 runs of behavioral data, resulting in a total of 3200 synthetic runs (8 generating models × 
40 participants × 10 runs). We then fit all eight models to every dataset using the MAP method as the 
same before. The best-fitting model was always the one that generated the data, as indicated by all 
three quantitative metrics: AIC, BIC, and PXP (Figure 7B). We note that the RS3 and PH4 models tend 
to account well for each other. The MOS6 model achieves good fitting performances on synthetic 

https://doi.org/10.7554/eLife.93887
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datasets generated by the RS3 and PH4 models, but not vice versa. The slight confusion between 
RS3, PH4, and MOS6 is because they all include the EU strategy. Most importantly, the MOS and FLR 
models cannot adequately account for each other’s synthetic datasets, strongly supporting the inde-
pendent computational effects of strategy preference and learning rate.

Discussion
In this article, we propose to understand humans’ learning behaviors, especially the differences 
between healthy controls and patients, in the volatile reversal learning task through the lens of a 
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mixture-of-strategies. We develop the MOS model, which assumes that human participants make 
decisions by combining three distinct components: the EU, MO, and HA strategies. The EU strategy 
is rewarding but cognitively demanding, in contrast to the other two strategies, which are simpler 
and heuristic but less rewarding. We show that the MOS model can qualitatively capture several 
behavioral patterns that cannot be explained by previous models and quantitatively better capture 
human behaviors and healthy-patient differences when applied to a public dataset. The model reveals 
that individuals with MDD and GAD exhibit an atypical preference for simpler and less rewarding 
strategies (i.e. a stronger preference for the MO strategy), and this preference alone could explain 
their inferior task performance relative to healthy controls, as indicated by lower hit rates, reduced 
adaptation volatility, and slower learning curves. Furthermore, we demonstrate that the MOS model 
can reproduce the human behavioral learning rate adaptation effect without changing the learning 
rate itself. These findings suggest that a mixture of strategies provides an effective and parsimonious 
explanation for human learning behaviors in volatile reversal tasks.

The role of the HA strategy in volatile reversal learning
Although many observed behavioral differences can be explained by a shift in preference from the 
EU to the MO strategy among patients, we also explore the potential effects of the HA strategy. 
Compared to the MO, the HA strategy also saves cognitive resources but yields a significantly higher 
hit rate (Figure 4A). Therefore, a preference for the HA over the MO strategy may reflect a more 
sophisticated balance between reward and complexity within an agent (Gershman, 2020): when 
healthier participants exhaust their cognitive resources for the EU strategy, they may cleverly resort to 
the HA strategy, adopting a simpler strategy but still achieving a certain level of hit rate. This explains 
the stronger preference for the HA strategy in the HC group (Figure 3A) and the negative correlation 
between HA preferences and symptom severity (Figure 5). Apart from shedding light on the cognitive 
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impairments of patients, the inclusion of the HA strategy significantly enhances the model’s fit to 
human behaviors (see examples in Daw et al., 2011; Gershman, 2020; and also Figure 3—figure 
supplement 1).

Disassociate the learning rate adaptation and mixture of strategies
It is well-established that humans apply flexible learning rates in response to environmental volatility, 
exemplifying the successful application of ideal observer analysis. Behrens et al., 2007 constructed a 
hierarchical ideal Bayesian observer for the volatile reversal learning task that dynamically models how 
higher-order environmental volatility influences the updating speed of lower-order feedback proba-
bilities. This model suggests that the human brain estimates environmental volatility, and humans are 
expected to exhibit a faster-updating speed for feedback probabilities in volatile contexts. Consistent 
with their results, the context-dependent RS13 model revealed higher learning rate parameters in 
volatile contexts. Browning et al., 2015 identified the increase in learning rate from stable to volatile 
contexts as a hallmark of human sensitivity to environmental volatility. They found that individuals with 
high trait anxiety showed reduced adaptations, thus indicating lower sensitivity to volatility. Gagne 
et al., 2020 extended this research to MDD and GAD patients receiving either reward or aversive 
feedback. Furthermore, the phenomenon of an increased learning rate from stable to volatile condi-
tions has also been observed in other paradigms, such as the Predictive Inference task (Nassar et al., 
2016; Nassar et  al., 2010), where participants explicitly report their estimation of environmental 
statistics, allowing for a direct estimation of the learning rate.

Based on our findings, we applied the MOS model—an alternative but sufficiently accurate model—
to the data collected from the volatile reversal task and found that the expected learning rate adap-
tation was not observed. Instead, the MOS model points to an alternative explanation that accounts 
for multiple human behavioral patterns and their symptom severity in a more parsimonious manner, 
involving fewer parameters. More importantly, it is possible for the MOS model to capture the pattern 
of learning rate adaptation without necessitating actual changes in learning rates across different 
contexts. These findings indicate that future studies may systematically compare the accounts of 
learning rate adaptation and a mixture-of-strategies.

It is important to note that learning rate adaptations and strategy preferences could simultaneously 
influence behaviors. However, accurately describing both mechanisms, particularly in terms of differ-
ences between populations, requires more refined behavioral paradigms. For example, it would be 
helpful to use paradigms like the predictive inference task (Nassar et al., 2016; Nassar et al., 2010), 
which allows participants to directly report their learning rates, to minimize the confounding factors 
in the decision process.

Atypical learning speed in psychiatric diseases
In the present work, we found that individuals with depression and anxiety display apparent flatter 
learning curves in the probabilistic learning tasks (shown in Figure 4A). We attributed this obser-
vation to participants’ strategy preferences. However, in conventional Rescorla-Wagner modeling, 
learning speed is primarily indicated by the learning rate parameter. For example, Chen et al., 2015 
conducted a systematic review of reinforcement learning in patients with depression and identified 
10 out of 11 behavioral datasets showing either comparable or slower learning rates in depressive 
patients. Nonetheless, depressive patients may not always exhibit slower learning rates. In a recent 
meta-analysis summarizing 27 articles with 3085 participants, including 1242 with depression and/or 
anxiety, Pike and Robinson, 2022 found a reduced reward but enhanced aversive learning rate. This 
finding yields two practical implications. First, the heterogeneous findings in the literature may arise 
from heterogeneous pathologies in depression and anxiety. Second, some behavioral variations intro-
duced by strategy preferences might have been misidentified as learning rate effects. The MOS model 
may provide useful complementary explanations for the consequences of a spectrum of symptoms.

Limitations and future directions
The MOS model was developed to provide context-free interpretations of the learning rate differences 
observed between stable and volatile contexts, as well as between healthy individuals and patients. 
However, we also recognize that the MOS account may not justify other learning rate effects based 
solely on strategy preferences. One such example is valence-specific learning rate differences, where 

https://doi.org/10.7554/eLife.93887
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learning rates for better-than-expected outcomes are higher than those for worse-than-expected 
outcomes (Gagne et al., 2020). When fitted to the behavioral data, the context-dependent MOS22 
model does not reveal valence-specific learning rates (Figure 4—figure supplement 1D). Moreover, 
the valence-specific effect was not replicated in the FLR22 model when fitted to the synthesized data 
of MOS6.

The context-dependent MOS22 model revealed several weak interaction effects, suggesting an 
interaction between learning adaptation and strategy preferences. For example, patients with MDD 
and GAD may find it too taxing to increase their learning rates in the volatile context and instead 
resort to simpler strategies, such as MO, as a compromise. Investigating this hypothesis may require 
a paradigm incorporating a self-reporting learning rate module, like the predictive inference task 
(Nassar et al., 2010), in volatile reversal learning tasks.

Theories suggest that humans increase learning rates in the volatile context due to increased 
perceived uncertainty about environmental statistics (Behrens et al., 2007; Nassar et al., 2010), while 
others propose that strategies enabling more exploration are preferred when managing uncertainty 
(Fan et al., 2023; Wilson et al., 2014). To explore these ideas, we may need to adjust the paradigm to 
offer a wider choice of stimuli, from two to three or four (i.e. set size effects). Another question is why 
individuals with depression and anxiety tend toward simpler decision-making strategies. Rumination, 
a maladaptive emotion regulation behavior characterized by persistent negative thoughts observed 
in individuals with depression (Song et al., 2022; Yan et al., 2022), may consume cognitive resources, 
hindering the use of the more complex but rewarding EU strategy.

Materials and methods
In this section, we provide the mathematical and implementational details of our model. Code is avail-
able at https://github.com/fangzefunny/policy-analysis, (copy archived at Fang, 2024).

Datasets
We focused on the data from Experiment 1 reported by Gagne et al., 2020. The data is publicly 
available via https://osf.io/8mzuj/. The original study included data from two experiments. The data 
from Experiment 2 was not used here because it was implemented on Amazon’s Mechanical Turk with 
no information about the participants' clinical diagnoses. Here, we provide critical information about 
Experiment 1 (also see Gagne et al., 2020 for more technical details).

Participants
Eighty-six participants took part in this experiment. The pool includes 20 patients with a major depres-
sive disorder (MDD), 12 patients with a generalized anxiety disorder (GAD), and 54 healthy control 
participants. The diagnosis was made through a phone screen, an in-person screening session, and 
the structured clinical interview following DSM-IV-TR (SCID) in 20 MDD patients, 12 GAD patients, and 
20 healthy control participants. The remaining 30 healthy control participants were recruited without 
SCID. In this article, we grouped the MDD and GAD individuals into a patient (PAT) group and the 
remaining 54 participants into a healthy control (HC) group. The detailed difference between MDD 
and GAD is not the focus of this paper. We will show later that the general factor behind MDD and 
GAD is the only factor that predicts learning behavior (see next section for details), a similar result 
reported in the original study (Gagne et al., 2020).

Clinical measures
The severity of anxiety and depression in all participants was measured by several standard clin-
ical questionnaires, including the Spielberger State-Trait Anxiety Inventory (STAI form Y; Spielberger 
et al., 1983), the Beck Depression Inventory (BDI; Beck et al., 1961), the Mood and Anxiety Symptoms 
Questionnaire (MASQ; Clark and Watson, 1991; Watson and Clark, 1991), the Penn State Worry 
Questionnaire (Meyer et al., 1990), the Center for Epidemiologic Studies Depression Scale (CESD; 
Radloff, 1977), and the Eysenck Personality Questionnaire (EPQ; Eysenck and Eysenck, 1975). An 
exploratory bifactor analysis was then applied to item-level responses in all questionnaires to disen-
tangle the variance that is common to GAD and MDD or unique to each. The results of this analysis 
summarized participants' symptoms into three orthogonal factors: a general factor (g) explaining the 

https://doi.org/10.7554/eLife.93887
https://github.com/fangzefunny/policy-analysis
https://osf.io/8mzuj/


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Fang et al. eLife 2024;13:RP93887. DOI: https://doi.org/10.7554/eLife.93887 � 16 of 23

common symptoms, a depression-specific factor (f1), and an anxiety-specific factor (f2), which are all 
included in the public dataset. Similar to the original study, here we focused on the general factor (g 
score) to indicate the participants' severity of their psychiatric symptoms.

Stimuli and behavioral task
In a volatile reversal learning task, participants were instructed on each trial to choose between 
two stimuli, represented by different shapes, in order to receive feedback. The locations of the two 
shapes were counterbalanced across trials. The potential amount of feedback (referred to as feedback 
magnitude) was presented together with the stimuli. Only one of the two stimuli was associated with 
actual feedback (0 for the other one). The feedback magnitude, ranged between 1–99, was sampled 
uniformly and independently for each shape from trial to trial. Actual feedback was delivered only 
if the stimulus associated with feedback was chosen; otherwise, a number ‘0’ was displayed on the 
screen, signifying that the chosen stimulus returned no reward.

Participants was supposed to complete this learning and decision-making task in four experimental 
contexts, two feedback contexts (reward or aversive) × two volatility contexts (stable or volatile). 
Participants received points in the reward context and an electric shock in the aversive context. The 
reward points in the reward context were converted into a monetary bonus by the end of the task, 
ranging from £0 to £10. In the stable context, the dominant stimulus (i.e. a certain stimulus induces 
the feedback with a higher probability) provided a feedback with a fixed probability of 0.75, while 
the other one yielded a feedback with a probability of 0.25. In the volatile context, the dominant 
stimulus’s feedback probability was 0.8, but the dominant stimulus switched between the two every 
20 trials. Hence, this design required participants to actively learn and infer the changing stimulus-
feedback contingency in the volatile context.

Each participant was instructed to complete two runs of the volatile reversal learning task, one in 
the reward context and the other in the aversive context. Each run consisted of 180 trials, with 90 
trials in the stable context and 90 in the volatile context. No additional hints were provided about the 
transition from one context to another; therefore, participants need to infer the current context on 
their own. A total of 79 participants completed tasks in both feedback contexts. Four participants only 
completed the task in the reward context, while three participants only completed the aversive task.

Computational modeling
We first introduce our notation system. We denote each stimulus ‍s‍ as one of two possible states 

‍s ∈
{

s1, s2
}
‍. The labeled feedback magnitude (i.e. reward points or shock intensity) of the stimulus 

is ‍m
(
s
)
‍, and the feedback probability is ‍ψ

(
s
)
‍. Following the convention in reinforcement learning 

(Sutton and Barto, 2018), we presume that the decision is made from a policy ‍π‍ that maps the 
observed magnitudes ‍m‍ and currently maintained feedback probabilities ‍ψ‍ to a distribution over 
stimuli, ‍π

(
s | m,ψ

)
‍.

In a volatile reversal learning task, each participant in the experiment must resolve two funda-
mental challenges: (1) decision-making, determining an action to maximize benefit; and (2) learning, 
figuring out the untold feedback probability via their interaction with the environment. Here, we 
introduce four families of models that all utilize the same reinforcement learning method for learning 
feedback probability but differ in how they construct their policies for decision-making. First, the 
MOS model, the target model proposed in this paper, utilizes a decision-making policy consisting of 
a mixture of three strategies: EU, MO, and HA. Second, the FLR model, reported as the best model 
by Gagne et al., 2020, selects stimuli with higher values. The stimulus value was estimated by a linear 
combination of differences in feedback probability, (non-linear) feedback magnitude, and the stimu-
li’s consistency with habitual behaviors. Third, the Risk-Sensitive (RS) model, adopted from Behrens 
et al., 2007 and Browning et al., 2015, utilizes the EU strategy in decision-making and considers a 
subjective distortion of the learned feedback probability when calculating the expected value. Finally, 
the Pearce-Hall (PH) model, equipped with a built-in learning rate adaptation mechanism, utilizes the 
EU strategy for decision-making.

Notably, the MOS model, which is the core contribution of this study, posits that behavioral differ-
ences across the two participant groups and stable/volatile contexts are due to different weightings 
of multiple decision strategies. In contrast, the other three models posit that behavioral differences 
mainly arise via different learning rates between groups and contexts.

https://doi.org/10.7554/eLife.93887
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The MOS model
The key signature of the MOS model is that its policy consists of a mixture of three strategies: EU, 
MO, and HA. Among many possible variants of the MOS models, this particular three-strategy config-
uration was chosen as the representative model because it best accounts for human behavioral data 
(Figure 3—figure supplement 1).

The EU strategy postulates that human agents rationally calculate the value of each stimulus and 
use the softmax rule to select an action. In this case, the value of a stimulus should be its expected 
utility: ‍m

(
s
)
ψ
(
s
)
‍. The probability of choosing a stimulus ‍s‍ thus follows a softmax function.

	﻿‍
πEU

(
s | ψ, m

)
=

exp
(
βψ

(
s
)

m
(
s
))

∑
s′ exp

(
βψ

(
s′
)

m
(
s′
))

‍�
(1)

where ‍β‍ is the inverse temperature. For simplicity, we rewrite Equation 1 in the following form:

	﻿‍ πEU
(
s | ψ, m

)
= softmax

(
βψ

(
s
)

m
(
s
))

‍� (2)

Different from the EU strategy, the MO strategy postulates that observers only focus on feedback 
magnitude ‍m

(
s
)
‍, disregarding feedback probability ‍ψ

(
s
)
‍. This is certainly an irrational strategy but 

more economical in terms of cognitive efforts. Feedback magnitudes are explicitly shown with the 
stimuli in each trial and readily available for related cognitive computation. But feedback probability, 
as a latent variable, requires trial-by-trial learning and inference, which is more cognitively demanding. 
The MO strategy is defined as,

	﻿‍ πMO
(
s | m

)
= softmax

(
βm

(
s
))

‍� (3)

Unlike EU and MO, the HA strategy depends on neither feedback magnitude ‍m
(
s
)
‍ nor feedback 

probability ‍ψ
(
s
)
‍. The HA strategy reflects the tendency to repeat previous frequent choices. This 

tendency reflects the habit of choosing a stimulus, a phenomenon called perseveration in literature 
(Gershman, 2020; Wood and Rünger, 2016). For example, if an agent chooses stimulus 1 more often 
in past trials, she will form a preference for stimulus 1 in future trials. We constructed it as a Bernoulli 
distribution over the two stimuli ‍πHA

(
s
)
‍. The trial-by-trial update rule of ‍πHA

(
s
)
‍ will be detailed in 

Equation 5-6 below.
We implemented the hybrid policy of a linear mixture of the three strategies following the methods 

used in Daw et al., 2011,

	﻿‍ π
(
s | ψ, m,πHA

)
= wEUπEU

(
s | ψ, m

)
+ wMOπMO

(
s | m

)
+ wHAπHA

(
s
)
‍� (4)

where ‍wEU‍, ‍wMO‍, and ‍wHA‍ are the weighting parameters of each strategy. The three weighting param-
eters should be summed to 1, i.e., ‍wEU + wMO + wHA = 1‍. We can thus describe the policy an observer 
adopted just by examining the weighting parameters. Formulating the hybrid model in this way 
improves the interpretability of the weighting parameters because all three decision strategies are 
constructed in a Bernoulli format.

Next, we solve the challenge of probabilistic learning. Two distributions — the feedback proba-
bility and the habit—are learned and updated in a trial-by-trial fashion. We updated the feedback 
probability in a Rescorla-Wagner format (Rescorla, 1972):

	﻿‍

ψ
(
s1
)

= ψ
(
s1
)

+ αψ

(
O
(
s1
)
− ψ

(
s1
))

ψ
(
s2
)

= 1 − ψ
(
s1
)

‍�
(5)

where ‍αψ‍ is the learning rate for feedback probability. ‍O
(
·
)
‍ is an indicator function that returns 1 at the 

true feedback stimulus and 0 otherwise. To keep consistent with Gagne et al., 2020, we also explored 
the valence-specific learning rate,

	﻿‍

αψ =




αψ+, for
(
O
(
s1
)
− ψ

(
s1
))

> 0

αψ−, for
(
O
(
s1
)
− ψ

(
s1
))

< 0‍�
(6)
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‍αψ+‍ is the learning rate for better-than-expected outcomes, and ‍αψ−‍ for worse-than-expected 
outcomes. It is important to note that Equation 6 was only applied to the reward context, and the 
definitions of ‘better-than-expected’ and ‘worse-than-expected’ should change accordingly in the 
aversive context, where we defined ‍αψ+‍ for ‍

(
O
(
s1
)
− ψ

(
s1
))

< 0‍ and ‍αψ−‍ for ‍
(
O
(
s1
)
− ψ

(
s1
))

> 0‍.
In a similar manner, the habit component is updated.

	﻿‍

πHA
(
s1
)

= πHA
(
s1
)

+ αHA
(
A
(
s1
)
− πHA

(
s1
))

πHA
(
s2
)

= 1 − πHA
(
s1
)

‍�
(7)

where ‍αHA‍ is the learning rate for the habitual strategy. ‍A
(
·
)
‍ is also an indicator function that returns 

1 for the stimulus chosen at the current trial. Intuitively, the stimulus chosen more often will result in a 
higher ‍πHA‍ for subsequent trials.

We developed two variants of the MOS model: a context-free and a context-dependent variant. 
The context-free MOS6 has a total of six free parameters ‍ξ =

{
β,αHA,αψ , wEU, wMO, wHA

}
‍. This variant 

does not include the design of a value-specific learning rate. The context-dependent variant MOS22 
has a total of 22 free parameters. Among them ‍β‍ and ‍αHA‍ are context-free parameters that were held 
the same across all contexts. Parameters ‍

{
αψ+,αψ−, wEU, wMO, wHA

}
‍ are context-dependent parame-

ters that should be fitted independently to each context.
We fit the context-dependent parameters to each context following a 2 (reward/aversive) × 2 

(stable/volatile) factorial structure (Figure 1A). Specifically, the five context-dependent parameters, 
the positive learning rate parameter ‍αψ+‍, the negative learning rate parameter ‍αψ−‍, and three strat-
egies weights ‍wEU, wMO, wHA‍ were fit separately to each context. The remaining two parameters 

‍
{
β,αHA

}
‍ were held constant across all four experimental contexts for each participant. Thus, there 

were 22 free parameters (5 context-dependent parameters × 4 conditions + 2 context-free parame-
ters) of the MOS model in each participant.

The FLR model
The FLR model refers to Model 11 (i.e. the best-fitting model) in Gagne et al., 2020. Here, we describe 
the FLR model using the same notation system as the published paper, which is slightly different from 
the notations in the MOS model. The FLR model models the probability of selecting stimulus 1 as 
follows:

	﻿‍
π
(
s1 | v,πHA

)
= 1

1 + exp
(
−βv − βHA

[
πHA

(
s1
)
− πHA

(
s2
)])

‍�
(8)

where ‍β‍ and ‍βHA‍ are the inverse temperature parameters of the value of the stimulus 1 and the HA 
strategy, respectively. The value of stimulus 1 represents the advantage of ‍s1‍ over ‍s2‍,

	﻿‍ v = λ
[
ψ
(
s1
)
− ψ

(
s2
)]

+
(
1 − λ

)
sign

(
m
(
s1
)
− m

(
s2
)) ��m (

s1
)
− m

(
s2
)��r

‍� (9)

where ‍λ‍ is the weighting parameter balancing the two terms. The first term ‍ψ
(
s1
)
− ψ

(
s2
)
‍ 

indicates the feedback probability difference between the two options. The second term, 

‍sign
(
m
(
s1
)
− m

(
s2
)) ��m (

s1
)
− m

(
s2
)��r

‍, indicates the feedback magnitude differences scaled by a 
non-linear factor ‍r‍. Intuitively, the value ‍v‍ of ‍s1‍ can be understood as the weighted sum of the feed-
back probability differences and the feedback magnitude difference.

During the learning stage, the FLR model learns the feedback probability using the same equa-
tions in the MOS model (Equations 5; 6). The context-free variant FLR6 has six free parameters 

‍ξ =
{
αHA, r,βHA,αψ ,β,λ

}
‍. The context-dependent variant FLR22 considers ‍

{
αHA, r

}
‍ as context-free 

parameters and ‍
{
βHA,αψ+,αψ−,β,λ

}
‍ as context-dependent parameters, resulting in a total of 22 free 

parameters.

The RS model
We adopted the RS model from Behrens et al., 2007. The RS model assumes that participants apply 

the EU strategy but with a subjectively distorted feedback probability ‍
∼
ψ
(
s1
)
‍,

https://doi.org/10.7554/eLife.93887
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	﻿‍

π

(
s1 |

∼
ψ, m

)
= 1

1 + exp
(
−β

[∼
ψ
(
s1
)

m
(
s1
)
−

∼
ψ
(
s2
)

m
(
s2
)])

‍�

(10)

where ‍β‍ is the inverse temperature. The distorted probability is calculated by,

	﻿‍

∼
ψ
(
s1
)

= max
[
min

[
γ
(
ψ
(
s1
)
− 0.5

)
+ 0.5, 1

]
, 0
]

∼
ψ
(
s2
)

= 1 −
∼
ψ
(
s1
)

‍�
(11)

where the ‍γ‍ indicates participants’ risk sensitivity. When ‍γ = 1‍, a participant has an unbiased risk 
balance. ‍γ < 1‍ and ‍γ > 1‍ indicate risk-seeking and risk-aversive tendencies, respectively.

The RS model learns the feedback probability in the same way as the MOS and FLR models (i.e. 
Equation 5). The model did not include the HA strategy. The context-free variant RS3 has a total 
of three free parameters ‍ξ =

{
β,αψ , γ

}
‍. The context-dependent variant RS13 considers ‍

{
β
}
‍ as a 

context-free parameter and ‍
{
αψ+,αψ−, γ

}
‍ as context-dependent parameters, resulting in a total of 

13 free parameters.

The PH model
To explicitly incorporate a learning rate adaptation mechanism, we adopt the PH model from Pearce 
and Hall, 1980. This model proposes an adaptive learning rate, as outlined in Equation 5.

	﻿‍

ψ
(
s1
)

= ψ
(
s1
)

+ kαψ

(
O
(
s1
)
− ψ

(
s1
))

ψ
(
s2
)

= 1 − ψ
(
s1
)

‍�
(12)

where ‍k‍ is a scale factor of the learning rate. Each trial the learning rate is updated in accordance with 
the absolute prediction error,

	﻿‍ αψ = αψ + η
(��O (

s1
)
− ψ

(
s1
)��− αψ

)
‍� (13)

where ‍η‍ is the step size for the learning rate. We have no knowledge of participants’ learning rate 
values before the experiment, so we need to also fit the initial learning rate value, ‍α

0
ψ‍. The PH model 

generates a choice through the EU strategy:

	﻿‍
π
(
s1 | ψ, m

)
= 1

1 + exp
(
−β

[
ψ
(
s1
)

m
(
s1
)
− ψ

(
s2
)

m
(
s2
)])

‍�
(14)

The context-free variant PH4 has a total of four free parameters 
‍
ξ =

{
α0
ψ , k, η,β

}
‍
. The context-

dependent variant PH17 considers 
‍

{
α0
ψ

}
‍
 as a context-free parameter and as context-dependent 

parameters, resulting in a total of 17 free parameters.

Model fitting
Parameters were estimated for each participant via the maximum a posteriori (MAP) method. The 
objective function to maximize is:

	﻿‍
max
ξ

∑N
i=1 log L

(
si | mi, Oi, M, ξ

)
+ log p

(
ξ
)
‍� (15)

where ‍ξ‍ means the model-free parameters. ‍M ‍ is the model and ‍N ‍ refers to the number of trials of the 
participant’s behavioral data. ‍mi‍, ‍Oi‍, and ‍si‍ are the presented magnitude, true feedback probability, 
and participants’ responses recorded in each trial.

Parameter estimation was performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm in the scipy.optimize module in Python. This algorithm provides an approximation of the inverse 
Hessian matrix for the parameter, a critical component that can be employed in Bayesian model selec-
tion (Rigoux et al., 2014). In order to use the BFGS algorithm, we reparametrized the model, thereby 
transforming the original fitting problem into an unconstrained optimization problem. We carefully 
tuned the parameter priors to ensure that they had little impact on the fitting results. For each partic-
ipant, we ran the optimization with 40 randomly chosen initial parameters to avoid local minima.

https://doi.org/10.7554/eLife.93887
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Importantly, to fit the weighting parameters (‍wEU, wMO, wHA‍) and ensure they summed to 1, we 
parameterized the weighting parameters as outputs of a softmax function,

	﻿‍ wi = softmax
(
λi
)
∀i ∈

{
EU, MO, HA

}
‍� (16)

and fit the logits ‍λi‍ of the weights. All logits were assumed to be normally distributed with a prior 

‍N
(
0, 10

)
‍. In the result section, we used both (‍wEU, wMO, wHA‍) and (‍λEU,λMO,λHA‍) to represent partici-

pants’ strategy preferences. Some of the statistical analyses were performed only on (‍λEU,λMO,λHA‍) 
because they are normally distributed.

Simulation details
Simulate to understand the three strategies
We run simulations to understand the effects of the three strategies on hit rate, hit rate difference, 
and learning curve. We first used the MOS6 to simulate the learning behaviors of the healthy control 
group in 100 independent experiments. The parameters were set as  ‍β‍ = 10.803, ‍αHA‍ = 0.423, ‍αψ‍ = 
0.473, ‍λEU‍ = 1.138, ‍λMO‍ = –1.547, ‍λHA‍ = 0.686, where the first three parameters represent the median 
across both groups and the latter three weighting parameters are the median across healthy controls. 
Each simulated experiment consists of two runs, one showing a stable context first and then a volatile 
context, and vice versa in the other run. This approach results in a total of 200 runs for the healthy 
control group. The task sequences were randomly generated using the same design Gagne et al., 
2020 used for data collection. Similarly, we repeated all the simulation procedures for the patient 
group, except that the parameters were set to  ‍β‍ = 10.803, ‍αHA‍ = 0.423, ‍αψ‍ = 0.473, ‍λEU‍ = 0.515, 

‍λMO‍ = –0.220, ‍λHA‍ = 0.094. Note that we used identical {‍β,αHA,αψ‍} in both groups and only varied 
{‍λEU,λMO,λHA‍} as the median across the patient participants. We used ‍πEU

(
s | ψ, m

)
‍, ‍πMO

(
s | m

)
‍, and 

‍πHA
(
s
)
‍ to evaluate the task performance associated with each strategy (e.g. Figure 4B–D). We did 

not run each strategy completely independently because the HA strategy alone cannot complete the 
task without learning from decisions previously made by the EU strategy.

Simulate to explain learning rate adaptation using MOS6
In one simulated experiment, we sampled the four task sequences from the real data. We simulated 
20 experiments with the parameters of  ‍β‍ = 10.803, ‍αHA‍ = 0.423, ‍αψ‍ = 0.473, ‍wEU‍ = 0.60, ‍wMO‍ = 
0.15, ‍wHA‍ = 0.25  to mimic the behavior of the healthy control participants. The first three are the 
median of the fitted parameters across all participants; the latter three were chosen to approximate 
the strategy preferences of real healthy control participants (Figure 4A). Similarly, we also simulated 
20 experiments for the patient group with the identical values of ‍β‍, ‍αHA‍, and ‍αψ‍, but different strategy 
preferences  ‍wEU‍ = 0.15, ‍wMO‍ = 0.60, ‍wHA‍ = 0.25. In other words, the only difference in the param-
eters of the two groups is the switched ‍wEU‍ and ‍wMO‍. We then fitted the FLR22 to the behavioral 
data generated by the MOS6 and examined the learning rate differences across groups and volatile 
contexts (Figure 6).
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Data availability
All behavioral data are public via Open Science Framework.

The following previously published dataset was used:
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Gagne C, Zika O, 
Dayan P, Bishop SJ
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volatility in internalizing 
psychopathology

https://​osf.​io/​8mzuj/ Open Science Framework, 
8mzuj
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