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Reconstructing continuous language from brain signals
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Brain-computer interfaces (BCIs) are designed to bridge
the gap between human neural activity and external de-
vices. Previous studies have shown that speech and text
can be decoded from signals recorded from intracranial
electrodes.[1] Such applications can be used to develop
neuroprostheses to restore speech function in patients
with brain and psychiatric disorders.[2] These methods
largely rely on invasive intracranial neural recordings that
provide signals with high spatiotemporal resolution and
high signal-to-noise ratio. Despite the advantage of being
non-invasive, low temporal resolution means functional
magnetic resonance imaging (fMRI) has rarely been used
in this context to decode continuous speech, with its
application primarily limited to coarse classification
tasks.[3]

Despite this, fMRI-based neural encoding models have
seen great progress in the last decade. For example, voxel-
wise neural responses to continuous natural speech can be
predicted using feature embeddings extracted from language
models.[4] To reconstruct continuous speech from fMRI,
three obstacles must be overcome. First, the brain's semantic
representation regions are not clearly defined—previous
research suggests a distributed network across various
brain areas. Second, due to its temporal sluggishness, a

single fMRI time point captures information from multiple
preceding words within a 6–10-s window. Third, constrain-
ing the semantic space in language construction is chal-
lenging, as existing fMRI data capture only a fraction of the
real semantic richness.

In a recently published study,[5] Tang and colleagues
propose a Bayesian method to decode continuous lan-
guage from brain responses measured by fMRI. Unlike
previous attempts to decode semantic vectors (S) directly
from brain responses (R), this study used brain responses
as a control condition for language generation models.
The goal was to invert the encoding model to identify the
most appropriate stimulus. According to Bayesian theory,
the decoder estimates the posterior distribution P(S|R) and
finds the stimuli S that maximizes the posterior distribu-
tion given the neural response R. Instead of directly
building decoders that estimate P(S|R), which is usually
intractable due to the aforementioned difficulties, the au-
thors took advantage of the Bayesian decoding framework
that P(S|R) ∝ P(S)P(R|S) and focused instead on the
encoding model P(R|S).

This work successfully overcame the three main bar-
riers to fMRI-based language decoding. First, to localize
the brain voxels containing semantic information, encoding
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performance was used as a metric to select voxels for
decoding. Second, to deal with the temporal sluggishness
of blood oxygen level-dependent (BOLD) signals, the se-
mantic information for 10 s preceding each repetition time
was used to build the encoding model. Third, to ensure that
meaningful and readable sentences could be reconstructed,
the language model GPT-1 was used to parameterize the
prior distribution P(S) over the entire semantic space. GPT-
1 uses an autoregressive model to predict words based on
prior context, enabling natural language generation. Addi-
tionally, a beam search algorithm was used to maintain a
relatively large and stable candidate pool.

We note several differences between non-invasive fMRI-
based and invasive electrophysiology-based language
decoding. The success of language decoding in this study is
mainly due to the distributed nature of semantic representa-
tions in the brain, and the fact that semantic representations
during speech perception can be reliably captured by BOLD
signals. However, semantic space is highly multi-
dimensional, continuous, and infinite. Invasive speech BCIs
rely on electrophysiological signals with high temporal reso-
lution from the sensorimotor cortex; finite, discrete sets of
decoding targets, such as phonemes or letters, result in rela-
tively low word error rates. Nevertheless, the semantic
reconstruction approach proposed in this study is promising
for decoding higher-level amodal concepts, for example, the
decoding of text from silent videos, which cannot be easily
achieved by invasive speech-motor BCIs.

Despite the many advantages mentioned above, this
work still has some limitations. First, in the Bayesian
decoding framework, the effectiveness of the decoder de-
pends heavily on the performance of the encoding model.
GPT-1 embeddings may represent only a subset of the se-
mantic information in the brain. For example, in this work,
only well-encoded voxels were used for decoding. The
remaining voxels are probably also involved in semantic
representation, but cannot be encoded by GPT-1 embed-
dings. Second, this work assumed that the total brain
response is the sum of responses to semantics in previous
time points. This assumption may not be consistent with the
actual activation process in the brain.

Despite its limitations, this study sheds new light on non-
invasive BCI techniques. We see several promising di-
rections for BCIs in the future. First, safer, portable, and
durable invasive BCIs could help thousands of patients with
neurological disorders to express their thoughts. Second,
cheaper, smaller non-invasive BCIs may have clinical and
entertainment applications, such as in the metaverse. Finally,
it is also crucial to improve the temporal resolution of non-
invasive BCIs. For example, combination with electroen-
cephalogram or magnetoencephalography data could
compensate for the low temporal resolution of fMRI. With
higher temporal resolution, the decoder could use both se-
mantic and sensorimotor information to improve recon-
struction accuracy.
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