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Abstract
Vision-Language Models, pre-trained on large-scale image-text pairs, serve as strong foundation models for transfer learning
across a variety of downstream tasks. For few-shot generalization tasks, i.e., when the model is trained on few-shot samples
and then tested on unseen categories or datasets, there is a balance to be struck between generalization and discrimination
when tweaking these models. Existing approaches typically rely on one or two strategies during training to learn task-
specific knowledge, while preserving as much task-agnostic representation as possible. However, these methods overlook
the importance of other useful inductive biases, thereby limiting their generalization capabilities. In this work, we propose a
method – Learning with Enriched Inductive Biases (LwEIB) – to explore multiple inductive biases at the text, model, and
optimization levels. Specifically, we first propose to enrich the handcrafted text prompt with Large LanguageModel generated
descriptions for each category. To better capture structural cues in both linguistics and vision, we design two new adapters for
text and image encoders, respectively. Additionally, we propose a slow-fast optimization method to explore different degrees
of adaptation more efficiently, learning task-specific representations while maintaining task-agnostic ones. We empirically
validate the effectiveness of LwEIB on three widely used benchmarks. Remarkably, our LwEIB outperforms numerous state-
of-the-art methods across all evaluation metrics, demonstrating its efficacy and versatility. Our code is available at https://
github.com/ZjjConan/VLM-LwEIB.
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1 Introduction

Deep Neural Networks (DNNs) (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2015; He et al., 2016; Dosovit-
skiy et al., 2020) are powerful tools for image understanding.
Since the introduction of AlexNet (Krizhevsky et al., 2012),
the dominant paradigm for vision-related tasks has been to
pre-train DNNs on large-scale datasets (Deng et al., 2009;
Zhou et al., 2017) and then fine-tune them for specific tasks
such as image classification (Hu et al., 2018;Woo et al., 2018;
Yang et al., 2021; Tan and Le, 2019), object detection (Gir-
shick et al., 2014; Ren et al., 2015; Liu et al., 2016; Redmon
et al., 2016; Lin et al., 2017), semantic segmentation (Long
et al., 2015; He et al., 2017; Chen et al., 2024; Ronneberger
et al., 2015), person re-identification (Sun et al., 2017; Ye et
al., 2021; Zhang et al., 2024a, b), etc. This success is largely
attributed to the availability of large, crowd-labeled datasets
like ImageNet (Deng et al., 2009), PLACES (Zhou et al.,
2017) andMS-COCO (Lin et al., 2014). However, collecting
these datasets and their high-quality labels is costly.
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Recently, Vision-Language Models (VLMs) (Radford et
al., 2021; Jia et al., 2021; Yao et al., 2021; Yuan et al., 2021;
Zhai et al., 2022; Huang et al., 2023; Wang et al., 2021;
Alayrac et al., 2022) have emerged to reduce the need ofman-
ually collecting such high-quality annotations. VLMs are
usually pre-trainedonmassiveweb-searcheddata, such as the
400 million image-text pairs used in Contrastive Language-
Image Pretraining (CLIP) (Radford et al., 2021). These
models often contain a text encoder and an image encoder
and are pre-trained to construct a unified representation space
where related images and texts are grouped, while unrelated
ones are separated. This extensive pre-training allows VLMs
to capture complex image-language relationships and exhibit
good generalization across various tasks.

Although fine-tuning pre-trained VLMs is the most
straightforward strategy, the massive number of parame-
ters in VLMs poses challenges when fine-tuning them for
different downstream tasks, especially in scenarios with lim-
ited data and labels (i.e., few-shot settings). To address this,
prompt engineering (Radford et al., 2021) has emerged as a
key technique. This approach involves strategically formu-
lating input queries to guide VLMs toward desired outputs.
For example, in CLIP (Radford et al., 2021), handcrafted
text prompts like “a photo of a <CN>” are input into the
text encoder, where “<CN>” is replaced by actual category
names (e.g., “a photo of a dog”) to generate category-specific
features. These features are then compared with the visual
features produced by the image encoder to predict the output
class.

However, devising effective prompts requires substan-
tial expert knowledge and time. To address this, researchers
have recently proposed two types of parameter-efficient fine-
tuning (PEFT) strategies: prompt-based and network-based
methods. Prompt-based methods incorporates a small num-
ber of learnable prompts into either the text encoder (Zhou
et al., 2022a, b; Li and Liang, 2021; Lester et al., 2021; Bulat
and Tzimiropoulos, 2023), the image encoder (Chen et al.,
2022b; Rao et al., 2022), or both (Khattak et al., 2023a, b;
Lee et al., 2023; Wang et al., 2024), of pre-trained models.
During fine-tuning, only these added prompts are optimized,
while the rest of the model remains fixed. This approach
allows researchers to manipulate prompts to specific contex-
tual challenges. Another strategy is to construct lightweight
networks called adapters (Chen et al., 2022b; Houlsby et al.,
2019; Chen et al., 2022c; Gao et al., 2023; Zhang et al., 2022;
Stickland andMurray, 2019; Hu et al., 2021) for downstream
tasks. Unlike prompt-based methods, where task-specific
cues are learned and stored via additional prompted tokens,
adapters are shallow networks (e.g., MLPs) that enhance
generalizability through feature fusion. Like prompt-based
methods, optimization focuses only on the added adapters,
reducing memory usage and overfitting. Adapters are also
versatile, operating independently of network architecture

and easily integrating into various models (He et al., 2016;
Dosovitskiy et al., 2020; Liu et al., 2021). As a result, these
PEFTmethods have gained popularity for their practical util-
ity in VLMs.

Despite the promising results achieved by these methods,
they still face three challenges: (1) Images often contain
diverse textures and complex environments. A simple text
prompt (i.e., “a photo of a <CN>”) used in most existing
methods (Zhou et al., 2022a, b; Khattak et al., 2023a, b; Lee
et al., 2023) lacks precise descriptions of target categories,
making it difficult for VLMs to accurately align text and
visual modalities; (2) Transformer-based models generally
outperformConvolutional Neural Networks (CNNs) inmany
vision and language tasks, because they rely on more flexi-
ble self-attention layers to capture long-range dependencies.
However, due to fewer hard priors assumed as CNNs (e.g.,
weight sharing for translation invariance), pure transformers
(Dosovitskiy et al., 2020) are considered less efficient than
CNNs (He et al., 2016) in data-limited scenarios; (3) Most
existing methods are designed to fit well to training data dis-
tributions. This increases the risk of overfitting and reducing
the model’s ability to generalize to unseen samples. These
issues arise mainly because current approaches do not well
explore inductive biases, such as prior knowledge in the data,
model structure, and during optimization.We argue that these
inductive biases are crucial for effective adaptation, as they
help VLMs make predictions about unseen data by learning
from the limited training examples.

To this end, we propose a novel adaption framework –
Learning with Enriched Inductive Biases (LwEIB) – that
refers to the process of tuning VLMs by incorporating addi-
tional inductive biases. Specifically, our LwEIB incorporates
three levels of inductive biases: text-level, model-level, and
optimization-level. First, to bridge semantic gaps between
language and vision modalities, we propose the text-level
inductive bias by supplementing the prompt text with many
LLM-generated descriptions (Pratt et al., 2023) to provide
detailed information for each category. Second, to enable
the model to well capture inductive biases, we propose two
types of adapters for text and image encoders, respectively.
Specifically, for the text encoder, we design a phrase adapter
to explicitly explore connections between adjacent words.
For the image encoder, we design a spatial adapter to enable
the model to capture more local relationships and details
(Liu et al., 2021; Wu et al., 2021; Sd’Ascoli et al., 2021).
Third, based on our adapters, we further propose a sim-
ple optimization-level inductive bias to reduce overfitting.
This is achieved by a new dynamic training strategy that
allows the model to adjust to different degrees of fitting. We
perform extensive experiments and show that our LwEIB
can handle diverse few-shot generalization tasks. Compared
to previous methods, LwEIB achieves an average HM of
81.21 on base-to-novel generalization, an average recogni-
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Fig. 1 Average performance over 3 benchmarks. Similar to pre-
vious studies, we mainly evaluate the proposed LwEIB on three
few-shot image recognition benchmarks (see experiment section for
more details). The average performance across 3 benchmarks reveals
that our LwEIB yields the best performance outcomes when compared
with many existing state-of-the-art methods

tion accuracy of 68.61 and 60.84 on cross-dataset and domain
generalization evaluation, setting a new state-of-the-art aver-
age performance over these three benchmarks (see Fig. 1). In
summary, the main contributions of our approach are three-
folds:

1. Wepropose anovel parameter-efficient fine-tuning frame-
work–LearningwithEnriched InductiveBiases (LwEIB)
– that can be trained end-to-end to leverage multiple
inductive biases.

2. We propose three levels of inductive biases, i.e., text-
level, model-level and optimization-level, inductive
biases, to increase the generalizability of VLMs in few-
shot settings.

3. We evaluate LwEIB on three widely used and challeng-
ing few-shot generalization tasks. Experimental results
show that LwEIB achieves leading performance among
all compared methods in all evaluated benchmarks.

The paper is organized as follows. Sect. 2 provides an
overview of the studies related to our research. In Sect. 3,
we present the proposed LwEIB and include all experiment
results in Sect. 4. Finally, we draw conclusions in Sect. 5.

2 RelatedWork

2.1 Vision-LanguageModels

Recent advances in Vision-Language Models (VLMs) (Rad-
ford et al., 2021; Jia et al., 2021; Yao et al., 2021; Yuan et

al., 2021; Zhai et al., 2022; Huang et al., 2023; Wang et
al., 2021) have substantially influenced the fields of com-
puter vision and machine learning, particularly in efforts to
integrate language understandingwith image analysis. These
models capitalize on the self-supervised training paradigm,
utilizing large amounts of multi-modal data collected from
the web for their pre-training. For instance, CLIP (Radford et
al., 2021) and ALIGN (Jia et al., 2021) train their models in a
contrastivemannerwith the InfoNCE loss (Oord et al., 2018),
leveraging datasets comprising approximately 400 million
and one billion image-text pairs, respectively. With the
increasing amount of collected multi-modal data (e.g., five
billion image-text pairs) (Schuhmann et al., 2022), VLMs
show commendable effectiveness in various applications
(Ilharco et al., 2021). Despite acquiring good generalized
representations, the efficient adaptation of these pre-trained
VLMs to specific downstream tasks remains a formidable
challenge, especially in scenarios with limited training data
(e.g., few-shot settings). To address this challenge, numer-
ous studies have been proposed and have achieved good
performance on a variety of tasks, such as few-shot image
recognition (Gao et al., 2023; Kim et al., 2021; Zhang et
al., 2022; Zhou et al., 2022a, b; Chen et al., 2022a), object
detection (Feng et al., 2022; Gu et al., 2021; Zang et al.,
2022a; Zhou et al., 2022d; Zhong et al., 2022), and seg-
mentation (Ding et al., 2022; He et al., 2023; Zhou et al.,
2022c). In contrast, the present work proposes incorporating
several inductive biases to effectively facilitate the adaptation
of VLMs in different few-shot generalization tasks.

2.2 Efficient Transfer Learning for VLMs

To transfer large-scale pre-trained models to downstream
tasks, conventional approaches (Devlin et al., 2018; Brown
et al., 2020a) fine-tune all parameters of such pre-trained
models. However, as model size continues to increase, the
conventional paradigm is inherently constrained by signif-
icant computational requirements. More importantly, fine-
tuning such a large number of trainable parameters introduces
the risk of overfitting, especially in the few-shot setting.
Consequently, the NLP community has introduced several
parameter-efficient methods (Li and Liang, 2021; Houlsby et
al., 2019; Hu et al., 2021), which have been further extended
to the fields of computer vision (Chen et al., 2022b; Jia et
al., 2022) and visual language understanding (Zhou et al.,
2022a, b). Since the aim of this work is to develop an effi-
cient transfer learning method for VLMs, we mainly present
two dominant lines of research in the following: token-based
prompt learning and network-based adapters.

Prompt learning involves the initial provision of textual
prompts to the language component of VLMs, with the aim
of improving the models’ adaptability in vision-language
understanding. This approach often tunes the added tokens
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while the whole pre-trained model is frozen. For example,
CoOp (Zhou et al., 2022b) improves the few-shot transfer
capabilities of CLIP (Radford et al., 2021) by strategically
optimizing a continuous set of prompt tokens within its
language branch. This optimization contributes to a more
effective use of textual instructions to guidemodel responses.
CoCoOp (Zhou et al., 2022a) further extends CoOp by con-
ditioning language prompts on specific image instances.
This refinement allows language features to be more closely
aligned with the associated visual content. Recently, several
studies have made great strides in this area. These methods
include multiple template-based prompt learning (Lu et al.,
2022; Chen et al., 2023), improving the alignment of text and
image features throughoptimal transport (Chen et al., 2022a),
incorporating pre-trained CLIP as general knowledge (Yao
et al., 2023; Bulat and Tzimiropoulos, 2023; Khattak et al.,
2023b; Zhu et al., 2023) to address the problem of overfitting
to seen examples, and adding prompt tokens in both image
and text branches (Khattak et al., 2023a; Zang et al., 2022b;
Lee et al., 2023).

Adapters are first proposed in the NLP community to
adapt large-scale pre-trained language models (Houlsby et
al., 2019; Hu et al., 2021; Stickland and Murray, 2019),
and have recently been introduced in pure vision and vision-
language models. They are lightweight networks, e.g. MLPs,
that are inserted into the pre-trainedVLMs. Similar to prompt
learning, during fine-tuning, only the weights of the added
adapters are optimized while the other parameters of the
entire pre-trained model are frozen. With this strategy, task-
specific information is learned while the general knowledge
stored by the pre-training is retained. Recent representative
studies include adding an adapter layer after either image
(Gao et al., 2023; Zhang et al., 2022; Chen et al., 2022b, c)
or text encoders (Yu et al., 2023). More recently, a cross-
modal adapter (Jiang et al., 2022) has been developed for
text-to-video retrieval.

2.3 Inductive Biases for VLMs

In machine learning, inductive biases refer to the assump-
tions baked into algorithms that guide them toward particular
solutions or hypotheses. A typical example of inductive bias
is convolutional constraints, such as weight sharing and
translation invariance, which have been incorporated into
foundation models (e.g., Dosovitskiy et al. (2020), Liu et
al. (2021), Sd’Ascoli et al. (2021) to enable efficient training
in the relatively small data regime. Recently, several studies
have introduced inductive biases into the tuning process for
VLMs. For instance, PromptSRC (Khattak et al., 2023b) and
KgCoOp (Yao et al., 2023) regularize prompted representa-
tions by the frozen pre-trained models. This helps to retain
more task-agnostic general representations. ProDA (Lu et al.,
2022) introduces multiple handcrafted prompt templates to

enhance the representational capacity of the text encoder, fur-
ther improved by the use of LLM-generated text prompts in
HPT (Wang et al., 2024). Unlike these methods, which typ-
ically employ one or two inductive biases during training,
we propose to systematically incorporate inductive biases at
text, model, and optimization levels, leading to more effec-
tive VLM tuning and improved generalization.

3 Our Methodology

Following previous studies (Zhou et al., 2022a; Khattak et
al., 2023a; Wang et al., 2024; Lee et al., 2023; Khattak et
al., 2023b), our approach uses pre-trained transformer-based
CLIP models (Radford et al., 2021), i.e., using transform-
ers in both text and visual encoders. In this section, we first
provide some preliminary knowledge on CLIP and then elab-
orate on our proposed LwEIB.

3.1 Preliminaries

CLIP (Radford et al., 2021) represents a significant advance-
ment inVision-LanguageModels (VLMs), attracting consid-
erable scientific attention in both natural language processing
and computer vision. Roughly speaking, CLIP consists of
a text encoder and an image encoder. In transformer-based
CLIP, both the text and image encoders are transformers with
identical network architectures, comprising an embedding
layer, a series of transformer blocks (L), and a projection
layer. Each transformer block includes a multi-head self-
attention layer (MSA) and a feed-forward network (FFN).
We can formulate a single transformer block as follows:

MSA : z ← z + Attention(LNMSA(z)) (1)

FFN : z ← z + FC2(FC1(LNFFN (z))) (2)

where z represents the text or image input, LN denotes the
layer normalization, and Attention is a standard softmax-
based self-attention layer used to capture long-range depen-
dencies. FC1 and FC2 are two fully-connected layers. For
simplicity, we omit the GELU activation function between
the two FC layers. By jointly training the text and image
encoders with a contrastive objective (Oord et al., 2018; Rad-
ford et al., 2021) on massive image-text pairs (Radford et
al., 2021), CLIP aligns the representations of related image-
text pairs and pushes those of unrelated pairs further apart.
This extensive pre-training enables CLIP to simultaneously
encode both images and text descriptions such that CLIP can
be applied in a wide range of downstream tasks. Specifically,
given an image I and a text description T , CLIP first tok-
enizes each of them to generate N andM tokens, respectively.
Visual features (x) and text features (w) are then extracted by
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Fig. 2 Overview of our LwEIB. LwEIB is built on transformer-based
CLIP models and incorporates three types of inductive biases: (1) Text-
level Inductive Bias: Supplementing “a photo of a <CN>” with a few
LLM-generated customized texts to provide more category-specific
information; (2) Model-level Inductive Bias: Adapting the text and
image encoders with specially designed adapters to learn hard induc-

tive biases; (3) Optimization-level Inductive Bias: In the adapters, α

is a hyper-parameter that controls the degree of task-specific knowl-
edge being learned and used. During training, we dynamically adjust α
(DY (α)) to allow the model to learn different degrees of task-specific
knowledge. This optimization strategy strikes a good balance in recog-
nizing both seen and unseen scenarios

the pre-trained image and text encoders. Afterward, cosine
similarity scores (sim(x,w)) between these image and text
features can be computed to facilitate task-specific predic-
tions.

3.2 LwEIB

Following (Zhou et al., 2022a; Khattak et al., 2023a; Lee
et al., 2023; Khattak et al., 2023b; Wang et al., 2024), we
utilize the transformer-based CLIP model (Radford et al.,
2021) and focus on few-shot generalization tasks. The goal
is to tune CLIP using a limited number of training samples.
The tuned model should also have a good generalization
ability for unseen scenarios. To achieve this, we propose
a novel approach called Learning with Enriched Inductive
Biases (LwEIB). As illustrated in Fig. 2, LwEIB incorporates
three types of inductive biases: text-level, model-level, and
optimization-level inductive biases.

3.2.1 Text-level Inductive Bias

Given the widespread use of handcrafted prompts such as
“a photo of a <CN>” in Zhou et al. (2022a, b); Khattak et
al. (2023a); Lee et al. (2023); Khattak et al. (2023b); Bulat
and Tzimiropoulos (2023), these approaches aim to learn
a set of continuous prompt tokens to adapt CLIP for vari-
ous downstream tasks. For example, replacing “a photo of

a” with four learnable tokens, and optimizing these tokens in
different downstream tasks to provide trained descriptions of
the given “CN”. Here, we argue that, in most existing stud-
ies, the learnable tokens are shared across all categories and
cannot provide sufficient information to distinguish between
different categories. Furthermore, a limited set of learnable
tokens cannot adequately describe visual images in detail,
as images often contain much richer textures and complex
environments. These issues might be addressed by increas-
ing the number of learnable prompt tokens. However, doing
this greatly increases the number of trainable parameters
and leads to overfitting in few-shot settings, as shown in
many previous studies (Zhou et al., 2022a, b; Khattak et al.,
2023a, b).

To overcome these problems, we propose to enrich the
handcrafted prompt with some customized texts (Pratt et al.,
2023) generated by aLLM(Brown et al., 2020b).Our process
is shown in Fig. 2 and is formulated as follows:

T (CN )i ← [Thc(CN ); Tct (CN )i ], i = 1, ..., K (3)

Where CN denotes the category name, Thc represents the
handcrafted prompt, i.e., “a photo of a <CN>”. We use
LLM-generated descriptions (Brown et al., 2020b; Pratt et
al., 2023) as custom texts and denote the i-th customized
text for the category CN as Tct (CN )i . Here, K is the total
number of custom texts for each category, and [·; ·] indi-
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cates the concatenation operation. Through this process, the
category CN is enriched with K detailed descriptions, each
potentially containing useful cues. For example, as shown
in Fig. 2, the category “shiba inu” is enriched with multiple
attributes such as “small”, “compact”, or “fox-like face”. We
expect these detailed descriptions to bridge the semantic gap
between language and vision, leading to a better generaliza-
tion ability.

Currently, there are a few studies that leverage LLM-
generated text to facilitate the transfer of CLIP. Menon and
Vondrick (2022) and Pratt et al. (2023) use GPT-generated
class-specific attributes to improve zero-shot performance.
These methods are further enhanced by fine-tuning CLIP
for fine-grained recognition (Saha et al., 2024), using self-
attention to refine text features across different sentences
(Maniparambil et al., 2023), and designing relationship-
guided attention to capture pairwise correspondences among
entities and attributes (Wang et al., 2024).Overall, these stud-
ies share a similar goal with ours: enhancing CLIP’s transfer
capability by better leveraging LLM-generated sentences.
However, unlike them, we introduce a strong inductive bias
into the text encoder via convolution (Sect. 3.2.2), which,
unlike attention-based methods, captures structural infor-
mation across sentences in a distinct manner. We further
propose an optimization-level inductive bias for model train-
ing (Sect. 3.2.3).

3.2.2 Model-level Inductive Bias

Based on large-scale pre-trained transformers, several tuning
methods (Hu et al., 2021; Khattak et al., 2023a, b; Lee et al.,
2023; Wang et al., 2024) have been proposed and obtained
goodperformance in few-shot generalization tasks.However,
all of them are prompt learning based methods and thus can-
not explicitlymodel some useful inductive biases such as text
phrases, local spatial connections, and translation invariance
in images. We are also interested in whether these induc-
tive biases can improve the tuning of VLMs in extremely
low-shot settings – a question that has not been thoroughly
explored in current VLM literatures. To address this, we fol-
low the network-based approach and propose two adapters
for VLMs in few-shot tasks.

Our adapters are used in a manner similar to many previ-
ous approaches (Hu et al., 2021; Chen et al., 2022b; Houlsby
et al., 2019), where they are integrated into each transformer
block (see Fig. 2, i.e., withinMSA and FFN). A general view
of ourmethod is shown in Fig. 3 (left). It is possible to achieve
better performance by integrating adapters at different layers
or in different blocks for the text and image encoders. How-
ever, for simplicity, this work uses the same arrangement for
both text and image encoders, because this approach greatly
reduces the efforts for engineering tuning. We find such an
identical integration method also achieves leading perfor-

Fig. 3 Model-level InductiveBiases Integration. Left: The general view
of our adapters for a transformer block. In detail, we enrich the model
with inductive biases after the layer normalization and the first FC layer
in MSA and FFN blocks respectively. Top-right: the structure of phrase
adapter for text encoder. Bottom-right: the structure of spatial adapter
for image encoder,where Seq2Im(·) reshapes 1D sequence to 2D feature
map, and Im2Seq(·) reshapes it back. α is a scaling factor. Note that,
Only DWConv1D and DWConv2D in adapters are tuned

mance in different benchmarks. Next, we will present the
details in the following.

Phrase Adapter (PA). The widely used self-attention mech-
anism is a powerful method to capture relationships from
large training corpus, with an emphasis on longer-range
dependencies betweenwords across the entire sentence. Cur-
rently, the enriched prompts, e.g., “A photo of shiba. A shiba
inu is a small, compact dog with a fox-like face”, contain
strong connections between adjacent words. To tailor the
few-shot generalization task where relationships between
adjacent words is pivotal, we instead use a simpler convolu-
tion approach – “Phrase Adapter (PA)” to explicitly model
such phrase cues. Let us use W = [w j ]Mj=1,W ∈ RM×D

to denote M word tokens with D dimensions. W will be fed
into the transformer block. In the following,we omit the layer
index for simplicity. Our PA is shown in Fig. 3 (Top-right)
and can be formulated as:

PA(W) : W ← W + α · DWConv1D(W) (4)
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where DWConv1D is a 1D depthwise convolutional layer
with a kernel size of 3 × 1 × D. This layer convolves along
M words to capture phrase relationships through adjacent
words. The output shape of this layer is the same as W
by zero padding. DWConv is adopted in the PA because
it introduces only a small number of trainable parameters,
which helps reduce overfitting. Additionally, similar to other
adapters (Hu et al., 2021; Chen et al., 2022b; Houlsby et al.,
2019), we use a scaling factor α to control the degree of inte-
gration of specific knowledge into the pre-trained VLMs.
Obviously, a larger α integrates more task-specific knowl-
edge and vice versa. After defining PA, we add Eq. (4) to
each transformer block as shown in Fig. 3 (Left), and modify
Eqs. (1) and (2) for the text encoder as follows:

W ← W + Attention(PA(LNMSA(W)) (5)

W ← W + FC2(PA(FC1(LNFFN (W)))) (6)

As shown in Fig. 3 (Top-right), only kernels of DWConv1D
in PA are optimized to capture task-specific knowledge,
highlighted by underline in Eqs. (5) and (6).

Spatial Adapter (SA). It is well known that certain induc-
tive biases, such as locality, translation equivariance, and
translation invariance, are essential for learning effective
representations of images (Krizhevsky et al., 2012; He et
al., 2016; Simonyan and Zisserman, 2015). By integrating
these inductive biases, models become more sample- and
parameter-efficient. However, these inductive biases have
not been leveraged in the adaptation of current VLMs, and
their effectiveness in the extremely few-shot scenarios has
not been demonstrated. Therefore, we propose a “Spatial
Adapter (SA)” to capture these inductive biases. Let Y =
[c; X],Y ∈ R(N+1)×D represent the input to the transformer
block of the image encoder, where c is the extra class token
and X = [x j ]Nj=1, X ∈ RN×D consists of N patch tokens.
Our SA is shown in Fig. 3 (Bottom-right) and formulated as
follows:

SA(Y) : c, X ← Spli t(Y)

X ← Seq2Im(X)

X ← X + α · DWConv2D(X)

Y ← [c; Im2Seq(X)] (7)

where Seq2Im transforms the sequential patch tokens X into
an R-row by C-column tensor RR×C×D (Fig. 3 (Bottom-
right)). A 2D depthwise convolutional layer – DWConv2D
with a kernel size of 3 × 3 × 1 × D – is used to convolve
along the 2D spatial dimensions to capture inductive biases
embedded in the image. Im2Seq then transforms the tensor
back into sequential patch tokens. With SA, our formulation
for each transformer block in the image encoder is shown as
follows:

Y ← Y + Attention(SA(LNMSA(Y)) (8)

Y ← Y + FC2(SA(FC1(LNFFN (Y)))) (9)

Similar to PA, we only tune parameters in SA, which is
denoted using underline.

3.2.3 Optimization-level Inductive Bias

Given a set of enriched text prompts, we can optimize
the parameters in PA and SA to adapt VLMs in different
downstream tasks. For the optimization process, a common
approach to balance underfitting and overfitting is to monitor
the training loss and accuracy on a held-out validation set.
This strategy is widely used in many machine learning algo-
rithms. Unfortunately, it is difficult to systematically balance
between underfitting and overfitting in the few-shot scenario.
To address this issue, we propose an inductive bias for the
training step.

Let us recall our adapters. The hyper-parameter α plays an
important role in learning task-specific knowledge. On one
hand, if α is too small, VLMs cannot be well trained to fit
current training data, i.e. in an underfitting state. This could
be helpful for model generalization in unseen situations, as
the general knowledge of VLMs is preserved. On the other
hand, if α is too large, VLMs will quickly fit to the limited
number of training samples, which can easily lead to an over-
fitting state. In summary, we should use a small α to improve
the generalization ability of VLMs, while use a relative large
α to learn useful task-specific knowledge for seen categories.
Based on our observation, we propose a slow-fast optimiza-
tion method, which is achieved by a dynamic scaling of α

and is shown as follows:

DY (α) ←
{
s · α, prob > 0.5

α, otherwise
(10)

s is a new introduced hyper-parameter, which is set ≥ 1 to
scale the adapter’s α in this study. We use the uniform distri-
bution to generate a random number: prob, which lies in the
range of [0, 1]. During the training phase, we replace the α in
all PA and SAwith the newly designed Eq. (10). In this case,
when a randomgenerated number> 0.5, DY (α) enlarges the
α tomake themodel fit the current data faster, otherwise vice.
After training, we directly use α for inference in both seen
and unseen categories. The proposed slow-fast optimization
dramatically improves the model’s generalization ability in
unseen scenarios.

4 Experiments

To demonstrate the effectiveness of our proposed LwEIB,
the evaluation settings are the same as CoOpOp (Zhou et
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al. (2022a)), including Generalization from Base-to-Novel
Classes, Cross-Dataset Evaluation, and Domain General-
ization.

Generalization from Base-to-Novel Classes. Following the
protocol used in Zhou et al. (2022a, b), our LwEIB is evalu-
ated on 11 widely used image classification datasets. These
include two datasets relevant to general object recognition:
ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et
al., 2004), and five fine-grained image recognition datasets:
Pets (Parkhi et al., 2012), Cars (Krause et al., 2013), Flow-
ers (Nilsback and Zisserman, 2008), Food101 (Bossard et al.,
2014), andAircraft (Maji et al., 2013). Additionally, the eval-
uation covers a scene understanding dataset – SUN397 (Xiao
et al., 2010), a texture dataset – DTD (Cimpoi et al., 2014),
a satellite-image recognition dataset – EuroSAT (Helber et
al., 2019), and an action classification dataset – UCF101
(Soomro et al., 2012). This comprehensive evaluation spans
diverse recognition tasks, facilitating an assessment of the
models’ generalization capabilities. Similar to Zhou et al.
(2022a); Khattak et al. (2023a); Lu et al. (2022); Yao et al.
(2023); Bulat and Tzimiropoulos (2023), themodel is trained
on base classes with 16 shots, and then tested on both base
and novel categories.

Cross-Dataset Evaluation. Similar to the Base-to-Novel
experiments, the cross-dataset evaluation uses the 11 datasets
mentioned above. Following the methodology advocated in
CoCoOp (Zhou et al., 2022a), all models are trained on Ima-
geNet with 1,000 categories, each category consisting of 16
training samples. After training, the models are directly eval-
uated on the other 10 datasets without any additional tuning.

Domain Generalization. To assess the robustness of models
under large distribution shifts, Zhou et al. (2022a) propose
to examine the ImageNet fine-tuned models on other four
ImageNet variants, each characterized by different types of
domain shifts. These datasets are ImageNetV2 (Recht et al.,
2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A
(Hendrycks et al., 2021), and ImageNet-R (Hendrycks et al.,
2021).We also adopt this approach for amore comprehensive
study.

Implementation Details. Following previous studies (Zhou
et al., 2022a, b; Khattak et al., 2023a; Lu et al., 2022; Yao
et al., 2023; Bulat and Tzimiropoulos, 2023), our experi-
ment operates only in a few-shot manner, specifically using
16 shots per category. We utilize the ViT-B/16 based CLIP
model in all experiments. The standard template a photo of
a <CN>”, with <CN>” substituting class names, serves as
the handcrafted text prompt. Furthermore, in our text-level
inductive biases, we use CuPL (Pratt et al., 2023) as the addi-
tional category-wise description. The number of descriptions
K for each category is set to 20. For PA and SA, we use a
kernel size of 3 in both DWConv1D and DWConv2D to

capture inductive biases at the model level. In the Base-to-
Novel generalization, the scaling factor for the adapters, α, is
set to 0.025, and the multiplier s in Eq. (10) is set to 2.5. We
train our model for 30 epochs with a batch size of 16 and a
learning rate of 0.25. In other two experimental settings, sim-
ilar to MaPLe (Khattak et al., 2023a), which adjusts training
configurations to avoid overfitting, we train our model for
10 epochs with a batch size of 64 and a learning rate of 0.2.
The scaling factor α and the multiplier s are set to 0.05 and
10.0, respectively. All optimization is performed using an
SGD solver with a momentum of 0.9 and a weight decay of
0.0005. All models are trained under a cosine learning rate
schedule on a single GPU device with mixed-precision. We
report Base and Novel class accuracies and their harmonic
mean (HM) in the Base-to-Novel Generalization. For other
two settings, we report class accuracy on each dataset. All
results are averaged over three runswith three different seeds.

4.1 Main Results

Base-To-Novel Generalization. We conduct an analysis of
our LwEIB in comparison with many state-of-the-art meth-
ods, including the zero-shot baseline – CLIP (Radford et al.,
2021), text-driven prompt learners such as CoOp (Zhou et
al., 2022b), CoOpOp (Zhou et al., 2022a), ProDA (Lu et
al., 2022), KgCoOp (Yao et al., 2023), and LASP-V (Bulat
and Tzimiropoulos, 2023), and multi-modal prompt learn-
ers such as RPO (Lee et al., 2023), MaPLe (Khattak et al.,
2023a), PromptSRC (Khattak et al., 2023b), and HPT (Wang
et al., 2024). The evaluation is based on the recognition accu-
racy on 11 datasets comprising both base (Base) and novel
(Novel) classes, as well as their harmonic mean (HM) (Xian
et al., 2017; Zhou et al., 2022a). All results are presented in
Table 1.

Based on the reported results, twomain conclusions can be
made. First, the proposed LwEIB exhibits the highest over-
all performance across 11 datasets, as assessed by various
evaluation metrics that include both base and novel class
accuracies, aswell as theirHMscores. Specifically, amongall
the comparedmethods, HPT (Wang et al., 2024) provides the
best results with an HM score of 80.23. This method adapts
VLMswith structured linguistic knowledge such as category-
wise descriptions, attributes, and their relationships, which
serve as strong text-level inductive biases for different cate-
gories in different datasets. Instead of using only text-level
inductive biases, ourLwEIBextensively integrates text-level,
model-level, and optimization-level inductive biases to adapt
VLMs. By integrating such multi-level inductive biases, our
method can better tune VLMs in most few-shot scenarios.
As a result, our LwEIB achieves significantly better perfor-
mance than HPT in base, novel, and HM scores respectively
(see Table 1: Base: 84.45 vs. 84.32; Novel: 78.21 vs. 76.86;
HM: 81.21 vs. 80.23)
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Table 1 Comparison with state-of-the-art methods across diverse datasets in the Base-to-Novel Generalization setting

Methods Entry Avg ImNet Caltech101 Pets
Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 2021 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12

CoOp 2022 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47

CoOpOp 2022 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43

ProDA 2022 81.56 72.30 76.65 75.40 70.23 72.72 98.27 93.23 95.68 95.43 97.83 96.62

KgCoOp 2023 80.73 73.60 77.00 75.83 69.96 72.78 97.72 94.39 96.03 94.65 97.76 96.18

MaPLe 2023 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58

LASP-V 2023 83.18 76.11 79.48 76.25 71.17 73.62 98.17 94.33 96.21 95.73 97.87 96.79

RPO 2023 81.13 75.00 77.78 76.60 71.57 74.00 97.97 94.37 96.03 94.63 97.50 96.05

PromptSRC 2023 84.26 76.10 79.97 77.60 70.73 74.01 98.10 94.03 96.02 95.33 97.30 96.30

HPT 2024 84.32 76.86 80.23 77.95 70.74 74.17 98.37 94.98 96.65 95.78 97.65 96.71

LwEIB Ours 84.45 78.21 81.21 76.64 71.64 74.06 98.47 95.47 96.95 95.70 97.40 96.54

Methods Entry Cars Flowers Food101 Aircraft
Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 2021 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09

CoOp 2022 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75

CoOpOp 2022 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74

ProDA 2022 74.70 71.20 72.91 97.70 68.68 80.66 90.30 88.57 89.43 36.90 34.13 35.46

KgCoOp 2023 71.76 75.04 73.36 95.00 74.73 83.65 90.50 91.70 91.09 36.21 33.55 34.83

MaPLe 2023 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50

LASP-V 2023 75.23 71.77 73.46 97.17 73.53 83.71 91.20 91.90 91.54 38.05 33.20 35.46

RPO 2023 73.87 75.53 74.69 94.13 76.67 84.50 90.33 90.83 90.58 37.33 34.20 35.70

PromptSRC 2023 78.27 74.97 76.58 98.07 76.50 85.95 90.67 91.53 91.10 42.73 37.87 40.15

HPT 2024 76.95 74.23 75.57 98.17 78.37 87.16 90.46 91.57 91.01 42.68 38.13 40.28

LwEIB Ours 80.07 74.01 76.92 97.53 77.50 86.37 90.63 91.73 91.18 45.11 42.60 43.82

Methods Entry SUN397 DTD EuroSAT UCF101
Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 2021 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85

CoOp 2022 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46

CoOpOp 2022 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64

ProDA 2022 78.67 76.93 77.79 80.67 56.48 66.44 83.90 66.00 73.88 85.23 71.97 78.04

KgCoOp 2023 80.29 76.53 78.36 77.55 54.99 64.35 85.64 64.34 73.48 82.89 76.67 79.65

MaPLe 2023 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77

LASP-V 2023 80.70 79.30 80.00 81.10 62.57 70.64 95.00 83.37 88.86 85.53 78.20 81.70

RPO 2023 80.60 77.80 79.18 76.70 62.13 68.61 86.63 68.97 76.79 83.67 75.43 79.34

PromptSRC 2023 82.67 78.47 80.52 83.37 62.97 71.75 92.90 73.90 82.32 87.10 78.80 82.74

HPT 2024 82.57 79.26 80.88 83.84 63.33 72.16 94.24 77.12 84.82 86.52 80.06 83.16

LwEIB Ours 81.10 79.80 80.44 82.87 67.83 74.60 95.00 80.01 86.86 85.73 82.37 84.02

Bold values indicate the best result for each evaluation setting among different methods
Herein, “Base” and “Novel” represent the recognition accuracies on base and novel classes, respectively. Furthermore, “HM” denotes the harmonic
mean of base and novel accuracies, thereby encapsulating the balance between adaptation and generalization. All results of othermethods are directly
taken from their original papers. The proposed LwEIB demonstrates commendable adaptability alongside remarkable efficacy in the generalization
of novel classes, thus achieving state-of-the-art performance in HM score.
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Secondly, as shown in Table 1, none of the investigated
methods achieves superior performance on all evaluation
metrics across all 11 datasets. Our LwEIB demonstrates
superior performance in novel classes in 6 out of 11 datasets,
while also being competitive with other methods in base
classes. HPT achieves the best overall performance in Flow-
ers102, and LASP-V performs the best in EuroSAT. Addi-
tionally, the zero-shot classifier – CLIP (Radford et al., 2021)
– also shows comparable performance to other methods in
Caltech101, Pets, and Food101. These results underscore
the persistent challenge of Base-to-Novel generalization and
highlight the ability of LwEIB to provide the most favorable
trade-off.

Cross-Dataset Evaluation.Acomprehensive summary of the
results is presented in Table 2. Significantly, our LwEIB
achieves the highest average accuracy of 68.61, surpass-
ing other state-of-the-art methods. A notable observation
is that LwEIB consistently outperforms the second-ranked
approach – HPT (Wang et al., 2024) in 6 out of 10 datasets.
Additionally, LwEIB remains competitive when evaluated
on the training source dataset – ImageNet. These results
highlight the commendable zero-shot transferability of our
LwEIB, indicating its potential for broader applications on
diverse datasets.

Domain Generalization. We directly evaluate the ImageNet
fine-tuned model (in the cross-dataset setting) on other four
variants of ImageNet. All results are presented inTable 3.
Remarkably, our LwEIBdemonstrates better performance on
3 out of 4 out-of-distribution datasets. This finding suggests
the inherent robustness of our LwEIB, particularly when
faced with significant domain shifts. Such an effect under-
scores the model’s ability to overcome limitations imposed
by dataset boundaries, thereby enhancing its applicability
and effectiveness in diverse real-world scenarios.

4.2 Ablative Analysis

We run a number of ablation experiments and show results in
Tables 4, 5, 6, 7, Figs. 4, and 5. These results are all averaged
over 11 datasets used in the Base-to-Novel Generalization
setting. We report base accuracy (Base Acc), novel accuracy
(Novel Acc), and their HM.

Effectiveness of Different Inductive Biases. Our goal is to
effectively integrate multi-level inductive biases for tun-
ing VLMs in different downstream tasks. In this study, we
perform an in-depth analysis of each proposed inductive
bias. The baseline is the original zero-shot CLIP classifier.
We gradually add text-level, model-level, and optimization-
level (Optim-level) inductive biases to CLIP and show all
results in Table 4. By enriching custom texts, each cate-
gory gains detailed descriptions, and such descriptions can Ta
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Table 3 Comparison with state-of-the-art methods in the Domain Generalization setting

Methods Entry ImNet -V2 -S -A -R Avg

CLIP 2021 66.73 60.83 46.15 47.77 73.96 57.18

CoOp 2022 71.51 64.20 47.99 49.71 75.21 59.28

CoCoOp 2022 71.02 64.07 48.75 50.63 76.18 59.91

MaPLe 2023 70.72 64.07 49.15 50.90 76.98 60.27

PromptSRC 2023 71.27 64.35 49.55 50.90 77.80 60.65

HPT 2024 71.72 65.25 49.36 50.85 77.38 60.71

LwEIB Ours 71.31 64.47 50.07 51.00 77.81 60.84

Bold values indicate the best result for each evaluation setting among different methods
All models are trained on the full 1000 categories in ImageNet (Deng et al., 2009) dataset under the 16-shot experiment setting and directly used for
evaluating on domain generalization. Following previous works (Zhou et al., 2022a, b), the average performance is calculated over the transferred
4 datasets. All results of other methods are directly from their original papers. Overall, our LwEIB obtains the best performance in 3 out of 4
out-of-distribution datasets, showing strong robustness to domain shifts.

Table 4 Effect of integration of our proposed inductive biases

Inductive Biases Base Acc Novel Acc HM

1: Baseline (CLIP) 69.34 74.22 71.70

2: + Text-level 72.26 76.11 74.14

3: + Model-level 85.01 76.56 80.56

4: + Optim-level 84.45 78.21 81.21

We gradually add different levels of inductive biases into the baseline
method – CLIP for tuning.

Table 5 Performance with different variants of trainable components

Component Variants Base Acc Novel Acc HM

1: Only PA 80.71 76.01 78.29

2: Only SA 81.30 77.92 79.57

3: Only Tct 83.72 78.00 80.76

4: LwEIB 84.45 78.21 81.21

Integrating with all proposed components performs the best.

provide more discriminative information between different
categories. This approach enhances themodel’s performance
in all evaluation metrics. Additionally, the performance is
further improved by introducing adapters to learn more
inductive biases within the model. Finally, when training
with our optimization-level inductive bias (i.e., the slow-fast
method), the base class accuracy has a small performance
decrement but the accuracy of the novel class is signifi-
cantly improved. This indeed confirms that our slow-fast
optimization method can provide a good trade-off between
underfitting and overfitting, leading to better HM scores.

Previous studies (Pratt et al., 2023; Menon and Von-
drick, 2022) have demonstrated that incorporating text-
based inductive bias (i.e., LLM-generated descriptions) can
enhance zero-shot performance across diverse datasets. Sim-
ilarly, we present per-dataset performance changes with and
without the proposed text-level inductive bias to examine

Table 6 Performance with different adapters in the text encoder

Adapters Base Acc Novel Acc HM

1: MLP 84.17 74.42 78.99

2: LoRA 84.10 74.20 78.84

3: Attention 82.95 73.38 77.87

4: Our PA 84.45 78.21 81.21

We replace our PA (DWConv1D) with other adapters.

Table 7 Integrating our adapters after different layers in Eqs. (1) and
(2)

Different Layers Base Acc Novel Acc HM

1: Attention - FC2 82.37 77.85 80.05

2: Attention - FC1 84.28 78.25 81.15

3: LNMSA - FC2 82.94 76.96 79.84

4: LNMSA - FC1 84.45 78.21 81.21

Our default strategy is adding adapters after LNMSA and FC1 layers
(denoted as LNMSA - FC1 ).

how this inductive bias, in combinationwith other two induc-
tive biases, performs. Details are presented in Fig. 4. As
shown, adding the text-level inductive bias generally leads
to improved performance, particularly for novel classes. For
instance, this approach results in an absolute improvement
of 1.14% on the challenging ImageNet dataset. In addition,
as presented in Fig. 4 and Table 2, the performance enhance-
ments are particularly notable for more challenging datasets,
such as EuroSAT, DTD and Aircraft. This phenomenon may
be attributed to a significant distribution shift between these
datasets and the original CLIP training data. The introduced
text-level inductive bias combined with other two proposed
mechanisms can effectively mitigate this shift.

Variants of Trainable Components. We evaluate the effec-
tiveness of different design choices. These design alternatives
relate to unimodal adapters introduced in either the test (Only
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Fig. 4 Comprehensive comparisons of using text-based inductive bias or not in theBase-to-NovelGeneralization setting. Adding text-level inductive
biases gains improvements in most cases

Fig. 5 The effectiveness of different scaling factor α and multiplier s. The horizontal and vertical axis represent different values of α and s. The
results in s = 1.00 means that we do not use the proposed slow-fast optimization method (Eq. (10)) during training phase. Best viewed in PDF
form

PA) or the image (Only SA) encoder, with the exclusion of
a handcrafted text prompt (Only Tct ). In Table 5, we present
the aggregated results averaged over 11 recognition datasets
used in the Base-to-Novel setting. Our analysis reveals that
using only PA or SA alone cannot incorporate inductive
biases from dual domains and does not perform aswell as our
full LwEIB. Furthermore, the inclusion of the handcrafted
prompt elevates the HM from 80.76 to 81.21, underscoring
its significance.

Different Adapters in Text Encoder. It often uses MLP
(Houlsby et al., 2019), LoRA (Hu et al., 2021), or self-
attention (Devlin et al., 2018) to tune the text encoder. Here,
we adopt 1D convolutional layers to explicitly extract infor-
mation from text phrases. The key distinction between our
method and others is that we intentionally add a strong induc-
tive bias into the text encoder. To verify the effectiveness
of our choice, we compare various adapters in Table 6. As
shown, neither MLP nor LoRA effectively model relation-

ships between words. Additionally, attention mechanisms,
which can capture long-range dependencies, do not perform
as well as ours. This may be due to two factors: first, self-
attention without inductive biases requires substantial data
to learn these relationships (Dosovitskiy et al., 2020); sec-
ond, self-attention may overly focus on unrelated context
(Ye et al., 2024), resulting in noise features. All these results
demonstrate that our PA introduces a strong inductive bias
for text phrases, leads to more stable training outcomes, and
better generalization ability in few-shot settings.

Integrating Adapters after Different Layers. Currently, our
adapters are applied after the layer normalization (LNMSA)
in MSA and after the first fully-connected layer (FC1) in
FFN respectively. This raises the question of whether placing
our adapters in different locations are more efficient. There-
fore, we test three additional configurations: placing adapters
after attention in MSA and after FC2 in FFN (Attention-
FC2), after the attention in MSA and after FC1 in FFN
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(Attention-FC1), and after LNMSA in MSA and after FC2
in FFN (LNMSA-FC2). As shown in Table 7, our current
design (LNMSA-FC1) still performs the best among all con-
figurations.

Analysis on Scale α and Multiplier s. We carefully explore
the influence of different scaling factor α and multiplier s in
Eq. (10) for our slow-fast optimization method. All results
are shown in Fig. 5. A relatively large α helps our model to
better recognize base classes but results in inferior perfor-
mance for novel classes (e.g., α = 0.01, s = 1.00), while a
smaller α makes the model hard to tune and usually results
in a lower accuracy for base classes but a higher accuracy
for novel classes (e.g., α = 0.01, s = 1.00). Also, adjusting
s in our slow-fast optimization slightly decreases the base
accuracy while significantly increases the novel accuracy,
reaching the best HM (81.21) at (α = 0.025, s = 2.50). This
further confirms the effectiveness of our optimization-level
inductive bias. In addition, when we train our model with
very large values such as (α = 0.1, s = 10.0), the model
tends to overfit to the few-shot training examples, leading to
inferior results in both base and novel classes. In addition,
our slow-fast optimization is probabilistic, which suggests
results may vary significantly on each run. We thus report
mean and standard deviation across three random runs with
different seeds here: Base: 84.45±0.30, Novel: 78.21±0.32,
HM: 81.21±0.17. All results show that our method demon-
strates a certain degree of robustness across different runs.
Possible future extensions of thisworkwill involve proposing
a new slow-fast optimization method with adaptive scaling
factor and multiplier, or further reducing the effects caused
by randomness.

Comparison our DY (α) with Dropout Regularization. Our
optimization-level inductive bias, DY (α), can be viewed as
a probabilistic perturbation training mechanism that aims to
balance the model between overfitting and underfitting. This
approach shares the objective of commonly used dropout
methods - namely, to reduce overfitting and enhance gen-
eralization through probabilistic perturbations. However,
traditional dropout does not account for differences in fit
between tasks and may not be well-suited for few-shot gen-
eration scenarios. To test this hypothesis, we conducted a
series of experiments, with results shown inTable 8. From the
table, it is evident that an appropriate dropout ratio can indeed
improve generalization to the training task (Base Acc), but
offers limited usage for novel tasks (Novel Acc). In contrast,
our method achieves a balanced performance across both
training and novel tasks.

4.3 Computational Costs

Table 9 compares computational costs including addi-
tional parameters, and train/test FPS, of LwEIB with other

Table 8 Comparison of the proposed optimization-level inductive bias
– DY (α) with the dropout method

Dropout Method Base Acc Novel Acc HM

1: Dropout−0.1 84.77 76.89 80.64

2: Dropout−0.2 84.65 76.88 80.58

3: Dropout−0.5 83.24 76.70 79.84

4: Our DY (α) 84.45 78.21 81.21

Dropout regularization with different ratios is denoted as Dropout-X.
Results with a dropout ratio greater than 0.5 are not shown, as large
dropout rates can make the network unstable.

Table 9 Comparison of additional parameters (+Params) and running
speed (FPS) among different methods using ImageNet dataset

Method +Params Train FPS Test FPS HM

CoOp 2 K 12 558 71.66

CoCoOp 35 K 3 8 75.83

MaPLe 3555 K 12 578 78.55

PromptSRC 46 K 11 577 79.97

HPT 296 K 7 150 80.23

LwEIB 507 K 11 264 81.21

Train FPS is tested with a batch size of 4 due to the high GPU memory
usage in CoCoOp. Test FPS is testedwith a batch size of 256. All speeds
are tested on a single GTX 8000 GPU.

approaches. First, our LwEIB adds significantly fewer addi-
tional parameters compared toMaPLe (507K vs. 3555K) but
has more parameters than two recently state-of-the-art meth-
ods, HPT and PromptSRC. However, our method achieves
the best HM score among all comparedmethods. Second, the
training speed of our LwEIB is comparable to that of CoOp,
MaPLe, and PromptSRC, while the testing speed surpasses
that of CoCoOp and HPT, placing it at a moderate level.
These comparative results indicate that efficiently utilizing
parameters while maintaining the running speed still remains
a big challenge in leveraging VLMs. Our method currently
provides a favorable trade-off.

5 Conclusion

The integration of large-scale Vision-Language Models
(VLMs) into downstream tasks poses a significant chal-
lenge, mainly due to the vast number of model parameters
in contrast to the limited availability of training data. In this
study, we propose a novel learning framework – Learning
with Enriched Inductive Biases (LwEIB) – that can simulta-
neously incorporate additional inductive biases at the text,
model, and optimization levels. Additionally, our LwEIB
fine-tunes only the added adapters to capture inductive
biases within the model, which is also a parameter-efficient
fine-tuning method. To evaluate the effectiveness of our pro-
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posed LwEIB, we conduct a series of experiments on three
challenging tasks: adaptation to novel classes, transfer to
new target datasets, and accommodation of unseen domain
shifts. Comparative evaluationswith state-of-the-artmethods
underline the superior performance of our LwEIB framework
across all three evaluation criteria.
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