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Atypical contributions of reward decisions |
to momentary mood in individuals
with methamphetamine use disorder
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Abstract

Background Individuals with Methamphetamine use disorder (MUD) are often accompanied by severe mood
dysregulation, leading to more frequent irrational decisions such as drug-seeking behavior. Existing research indicates
that the impairment of the reward system is central to the development of addiction. However, it remains unclear
how the abnormal reward processing affects the mood regulation abilities of individuals with MUD. In this study, we
explored the cognitive and computational mechanisms through which the subjective mood of individuals with MUD
is influenced by reward information during decision-making.

Methods We recruited 76 male participants (27 with MUD, 49 healthy controls, HC) who completed a risk gambling
task. In this task, participants were asked to choose between two options with certain or uncertain rewards. After
every 2-3 gambling trials, participants also rated their momentary subjective happiness. We constructed multiple
computational models to predict how various reward information (such as reward prediction error) influenced the
short-term fluctuations in participants’ subjective mood during risk decisions.

Results Individuals with MUD exhibited significantly more irrational decisions compared to the HC group.
Computational modeling revealed that, compared to healthy controls, individuals with MUD showed a significantly
weaker influence of various reward information (e.g., expected value, EV; reward prediction error, RPE) on their
subjective mood. Importantly, the EV- and RPE-mood associations predict the degree of substance abuse.

Conclusions Our findings provide computational evidence that individuals with MUD lack effective regulation of
mood by the reward system. This process leads to more substance abuse. These results shed new light on the mood
issues in individuals with MUD from the perspective of reward processing, thereby helping to reduce drug use.

Clinical trial Not applicable.
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Introduction

Substance use disorder is characterized by persistent
consumption of specific substances, despite that individ-
uals are fully aware of the harmful consequences, namely
an inability to control drug-seeking desires and behaviors
[1]. Among various substances, drug use significantly
impairs both physical and mental health, and drives
individuals toward irrational decision-making that jeop-
ardizes social stability and public safety [2, 3]. Recent epi-
demiological studies have highlighted a global increase in
the use of amphetamine-type stimulants such as meth-
amphetamine and methcathinone [4—6], which have sur-
passed cannabis as the most commonly abused stimulant
due to their potency and accessibility [7, 8]. Even more
concerning, compared to other commonly abused stimu-
lants, methamphetamine use disorder (MUD) is often
associated with more severe cognitive decline and mood
dysregulation [9], further exacerbating societal issues
such as family disruption and a rising rate of deaths [10,
11].

Individuals with MUD are often associated with
profound mood dysregulation. A substantial body of
research has documented anxiety, depression, anhedo-
nia, and emotional instability in individuals with MUD
[12-15]. Over 50% of individuals with MUD have self-
reported depressive symptoms [16, 17]. Functional neu-
roimaging studies reveal abnormal connectivity between
the prefrontal cortex and the limbic system during
emotional processing, supporting the presence of the
impaired mood regulation in individuals with MUD [18].
Such mood dysregulation not only amplifies psycho-
logical distress but may also contribute to drug relapse
[19]. According to the “negative reinforcement” model
[20], the escape and avoidance of negative affect is the
prepotent reason for addictive drug use. Drug taking
exacerbates negative affect during the process of seek-
ing temporary relief by compulsive drug taking, thereby
creating the addiction cycle and hedonic comorbidities
that are associated with addiction [21]. Therefore, identi-
fying and addressing the underlying mood dysregulation
in individuals with MUD is pivotal for improving clinical
rehabilitation and mitigating relapse risk.

A bulk of human and animal studies have suggested
abnormal reward processing as an important under-
lying mechanism of mood dysregulation in individu-
als with substance use disorders [22—25]. The aberrant
reward processing may contribute to mood dysregulation
in MUD via two distinct neurobiological mechanisms.
First, methamphetamine exposure has been shown
to induce diminished sensitivity to non-drug natural
rewards (e.g., monetary gain and palatable food), leading
to reduced pleasure and persistent anhedonia [26-28].
This reward hyposensitivity is thought to be associated
with decreased dopaminergic transmission and reduced

Page 2 of 12

neural activation within the striatum and other reward-
related regions [29, 30]. Second, the heightened sensitiv-
ity to drug-related cues results in overwhelming craving,
which causes severe psychological distress and impairs
mood regulation, particularly during withdrawal. Meth-
amphetamine consumption directly alters neural circuits
involving the striatum, limbic, and paralimbic regions,
generating exaggerated motivational salience that con-
tributes to anxiety and depressive symptoms during
withdrawal and abstinence [31-33]. These results dem-
onstrate a clear disruption in the integration of reward
processing and affective states in individuals with MUD.

Despite substantial evidence for abnormal reward pro-
cessing as a potential mechanism of mood dysregulation
in MUD, several issues remain unclear. First, although
past research has highlighted the long-term conse-
quences of drug-taking on mood dysregulation, little is
known about the short-term momentary mood fluctua-
tions that occur during trial-and-error in sequential deci-
sion-making. Understanding these dynamics is crucial,
as maladaptive decisions in MUD often prioritize imme-
diate gratification over long-term controllable benefits.
Second, how different types of reward information (e.g.,
reward prediction error, RPE) modulate real-time mood
in MUD is not well understood. Addressing these gaps
will enhance our knowledge of the interaction between
compromised reward circuits, mood dysregulation, and
maladaptive decision-making in MUD, guiding more
precise interventions targeting mood regulation.

This study systematically examined computational
mechanisms of atypical mood regulation during risky
decision-making in males with MUD and matched con-
trols. Participants performed a risky gambling task while
reporting real-time subjective happiness as a measure
of mood state. Combining behavioral experiments and
computational modeling, our approach yields two key
advancements: disentangling the effects of reward infor-
mation (e.g., RPE) on mood fluctuations and showing
how these reward-mood associations predict substance
use severity. Our findings provide direct evidence that
impaired reward processing underlies mood dysregula-
tion in MUD and highlight its clinical relevance in mal-
adaptive decisions and substance-seeking behaviors.

Methods and materials

Participants

We recruited 50 individuals with MUD from the First
Drug Rehabilitation Center of Yunnan Province between
July and August 2023. Fifty-seven healthy control par-
ticipants were also recruited in Shanghai between Feb-
ruary and July 2024. All participants were male because
the First Drug Rehabilitation Center of Yunnan Province
only received male patients. All participants had nor-
mal intelligence and were capable of understanding the
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experimental procedures. Methamphetamine depen-
dence was diagnosed according to the “Measures for the
Identification of Drug Addiction” revised by the Minis-
try of Public Security of China in 2017 [34]. Participants
were classified as methamphetamine-dependent if they
met the following criteria: (i) positive drug tests from
blood, urine, or saliva samples indicating the presence of
drugs; (ii) evidence of drug use behavior; (iii) presence of
withdrawal symptoms or historical evidence of drug use,
including being apprehended by the police, undergoing
voluntary detoxification, or testing positive for drugs in
hair samples. Eleven patients were excluded during the
screening process for using only heroin and not metham-
phetamine. We also applied the following exclusion crite-
ria to all participants:

+ Serious or unstable organic diseases (e.g., cancer,
cardiovascular diseases, or head injuries);

+ Other psychiatric disorders;

+ Treatment for psychological or physical illnesses
prior to recruitment.

These participants were also required to complete several
questionnaires for further analysis. These questionnaires
included basic demographic information, the Wechsler
Adult Intelligence Scale (WAIS) -matrix reasoning for
nonverbal IQ, the Self-Rating Depression Scale (SDS), the
Self-Rating Anxiety Scale (SAS), the Barratt Impulsive-
ness Scale (BIS), the Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition (DSM-5) report [35-38],
and questions about drug use and comorbidity history.

Four participants in the MUD group withdrew from
the study for personal reasons. An additional 27 partici-
pants in both groups were excluded due to failure to fol-
low the task instructions (e.g., constant mood ratings or
decision-making patterns throughout the experiment).
Some questionnaires were not completed due to partici-
pants’ dropouts or unidentified contact information. Ulti-
mately, data from 27 individuals with MUD (aged 16-50)
and 49 healthy controls (aged 17-52) were included in
the analysis.

The detailed demographic data are presented in
Table 1.

Risky gambling tasks

The risky gambling task is illustrated in Fig. 1. Our risky
gambling task followed the structure of previous studies
[39]. At the beginning of the task, each participant was
provided with a base virtual capital of 500 RMB. Their
objective was to maximize their earnings throughout
the task. In each trial, participants made a binary choice
between an uncertain option (including two potential
payoffs) and a certain option (offering a fixed payoff)
within a 3-second time window. If no decision was made
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within this time window, the participant received the
lowest reward among the three possible payoffs. The pay-
off of the certain option was constrained to fall between
the two potential payoffs of the uncertain option. After
a choice was made, the chosen option (either certain
or uncertain) remained on the screen for 2 s, while the
unchosen option disappeared. If the certain option was
selected, the participant immediately received the cor-
responding payoff at the end of the 3-second display. If
the uncertain option was selected, the uncertain option
remained on the screen for 3 s, followed by 1-second
outcome feedback. A fixation cross, randomly presented
for 2-5 s (mean =3 s), appeared before the next trial. The
uncertain option offered two potential payoffs with equal
probability, while the participant directly obtained its
payoff once choosing the certain option.

After every two or three decision trials, participants
completed a mood rating trial: “How happy are you at
this moment?”. Participants were asked to report their
mood on a 100-point scale, ranging from “very unhappy”
to “very happy’, without time limits.

The entire experiment consisted of 60 decision tri-
als and 22 mood-rating trials, and the whole risky gam-
bling task lasted approximately 14 min. Prior to the main
experiment, participants completed the practice session.
The setup of the practice session was identical to that
of the main experiment, except that the practice ses-
sion only contained 6 decision trials and 2 mood rating
trials. All experimental stimuli were programmed using
jsPsych7 (Josh de Leeuw, Corp.) [40], and presented via a
web browser.

Computational modelling construction

We constructed a computational model to account for
moment-to-moment subjective mood [39]. The model
has two key assumptions. First, mood ratings exhibit a
linear dependence on temporally accumulated reward
components from all preceding trials, specifically incor-
porating three parameters: chosen certain rewards (CRs),
expected values (EVs), and reward prediction errors
(RPEs). Second, the cumulative influence of preceding
trials on current mood decays exponentially.

Happiness (t) =wo + wy Z ‘17 ICR;

+wy > Sy TIEV +ws Yty I RPE; M
Where 0 < <1 is the decay factor that simulates the for-
getting of past events. t and j are trial numbers. Weights
(w1, ws, ws) of each component indicate the contribu-
tion of this component to mood ratings. wy is the base-
line mood. The RPE and EV for the certain option and the
CR for the uncertain option were set to zero. In addition
to this model, we also constructed several other compu-
tational models that have different reward components.



Xia et al. BMC Psychiatry (2026) 26:57 Page 4 of 12
Table 1 Demographic and clinical data and (standard deviations) by group
MUD HC Stats. value p value
Age (M+SD, n=27/49) 30.296+8.691 35.163+9.310 t=-2.232 0.029
Sex (male/female, n=27/49) 27/0 49/0
Drug intake (M +SD, g/day, n=25) 3432+4.780
Withdrawal (M +SD, month, n=25) 10.680+6.663
Comorbidity history (yes/no, n=25) 2/23
SDS (M£SD, <1 week, n=25/40) 44.280+7.760 37.650+5.531 t=4.019 <0.001
SAS (M+SD, <1 week, n=25/40) 41400+10.516 32.050+5.607 t=4.673 <0.001
BIS (M+SD, n=25/40)
Motor 25.480+11.136 22.725+6.555 t=1.258 0213
Cognition 30.360£10.230 23425+£5.134 t=3.629 <0.001
No plan 30.120+11.028 22.900+6.983 t=3.238 0.002
Drug type (n=25)
Crystal meth n=7
Yaba n=14
Crystal meth + Yaba n=4
Drug addiction
(M+SD, now, n=25)
Drug desire 14.200+7.331
Drug negative reinforcement 8.400+5.058
Drug control 4.360+2.885
DSM-5 self-report
(M+SD, <2 week, n=25/40)
Depression 1.840+1.818 2.300+£1.381 t=-1.155 0.252
Anger 1.120£1.269 0.775+0.733 t=1.391 0.169
Manic 1.760+1.589 2.300+1.381 t=-1447 0.153
Anxiety 2.040+£2.051 2450+£1.934 t=-0.812 0420
Somatization 2.320£2.193 1.275+1.601 t=2217 0.030
Suicide 0.600+0.957 0.275+£0.599 t=1.687 0.097
Psychiatric symptom 0.880+1.333 0.650+1.075 t=0.764 0447
Sleep 1.120+1.166 1.050+1.131 t=0.240 0811
Memory 0.760+£0.970 0.550+£0.714 t=1.003 0.320
Repeat thoughts/action 1.920+£2.197 1.575+£1.679 t=0818 0416
Dissociation 0.800+1.000 0.550+0.904 t=1.041 0.302
Personality 1.840+2.230 1.575+£1.866 t=0517 0.607
Substance use 2.200£2.041 1.075+1.509 t=2549 0.013

All details of computational models are documented in
Supplementary Note 1.

We estimated model parameters for each individual
using nonlinear least-squares regression implemented in
MATLAB R2024b (The MathWorks, Inc.) [41], with the
Isqnonlin function from the Optimization Toolbox. The
objective function minimized the sum of squared errors
between predicted and observed mood ratings. To ensure
robust convergence and to avoid local minima, the fitting
procedure was repeated 80 times with randomly initial-
ized starting values. The parameter set yielding the low-
est residual sum of squares was retained as the best fit
for each participant. Parameter recovery analysis demon-
strated excellent agreement between true and estimated
parameters (see Supplementary Figure S2). Codes are
publicly available via https://github.com/GITSyfX/CCN
N-Decisionhappy.

Statistical analysis

To evaluate the behavioral signature of risky decision, we
calculated the best choice rate and the uncertain choice
rate of each participant. The best choice rate is the pro-
portion of trials where a participant chose the option
yielding a higher mean payoff. The best choice rate indi-
cates the optimality of decision-making. The uncertain
choice rate is the proportion of trials where a participant
chose the uncertain option. The uncertain choice rate
indicates the extent of risk-seeking propensity.

To assess the severity of substance use among partici-
pants, we computed the total score of the substance use
subscale from the DSM-5 report. This subscale com-
prises three items evaluating the frequency and impact of
substance use over the past two weeks (e.g., “Using any of
the following medicines on your own, that is, without a
doctor’s prescription, in greater amounts or longer than
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Fig. 1 Task design. Shown in the blue boxed line is the flow of a decision trial subset, participants made a choice between a certain option and an uncer-
tain option. If participants made a certain choice, the outcome (i.e., 60 coins) would be presented immediately. If participants made an uncertain choice,
they first saw two possible outcomes (i.e, 0 vs. 168 coins) and then saw the outcome (i.e,, 0 or 168 coins). We show here the computation of CR, EV, and
RPE in one trial and label the process where the computation takes place. Subjects will need to perform the calculations themselves during the actual
task and will not see this content. Shown in the red boxed line is detail of a rating task. participants were instructed to indicate “How are you feeling right
now?" by moving the squares to the appropriate position with the mouse. The lower right part of the figure shows the complete flow of the experiment.

In the actual experiment, all text has been converted to Chinese

prescribed?”). Each item was rated on a 5-point Likert
scale ranging from 0 (“none”) to 4 (“severe”). The total
score was obtained by summing the item responses, with
higher scores reflecting greater severity of substance-use
problems. Given the high comorbidity of anxiety and
depression in the MUD group, we additionally assessed
anxiety and depressive symptoms using the SAS and
SDS, both consisting of 20 items rated on a 4-point Lik-
ert scale, with higher scores indicating greater symptom
severity.

For all behavioral, model parameter, and symptom
analyses, linear mixed model and Spearman correlation
analysis were performed in JASP 0.19.3 (https://jasp-stat
s.org/) [42]. Marginal means adjusted for the effects were
estimated using the Holm adjustment in JASP to specify
contrasts (¢-tests) between the MUD and HC groups. Our
sample size was comparable to several previous studies
employing similar experimental designs and computa-
tional modeling approaches [39, 43, 44].

Results

Atypical decision patterns of MUD in value-based decision-
making

We first examined the behavioral performance of indi-
viduals with MUD in the risky gambling task. A series of
linear mixed-effects models was constructed in JASP. In
each model, group (MUD vs. HC) was included as a fixed
effect, and SAS and SDS scores were entered as covari-
ates to account for the high comorbidity of anxiety and
depressive symptoms typically observed in individuals
with MUD [45-47]. The dependent variables included
log-transformed reaction time (with outliers beyond +2
SDs from the mean excluded, mood ratings, total earn-
ings, and choice rate (see Methods for details). In mod-
els for dependent variables assessed at the trial level (i.e.,
reaction time, mood ratings, and choice rate), participant
identity was included as a random effect to account for
inter-individual variability.

There was no evidence for a group effect in reac-
tion time (f4999) = -0.305, p=0.762, Estimate = -0.020,
SE=0.067, 95% CI = [-0.155, 0.114]). The mood ratings
of individuals with MUD were slightly higher (though
non-significantly so) than those of HCs (£ o) =1.905,
p=0.062, Estimate=7.097, SE=3.726, 95%CI = [-0.354,
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14.550]). The total earnings of individuals with MUD
were significantly lower than those of HCs (¢4;00 =
-2.185, p=0.033, Estimate = -409.943, SE =187.58, 95%CI
= [-785.03, -34.85]; Fig. 2A).

Importantly, using the same model, we found that the
individuals with MUD exhibited a significantly lower best
choice rate than those of HCs (¢4, o) = -2.564, p=0.013,
Estimate = -0.095, SE=0.037, 95%CI = [-0.169, -0.021];
Fig. 2B), indicating that the MUD group made less opti-
mal decisions. There was no significant group difference
in the uncertain choice rate (¢4, = -1.835, p=0.071,
Estimate = -0.092, SE=0.050, 95%CI = [-0.193, 0.008]).

The subjective mood of individuals with MUD was less
sensitive to reward information

In order to better understand the computational mech-
anisms of reward-based mood regulation in the two
groups, we constructed 10 computational models that
assume various reward components in previous trials
impact mood ratings. These reward components include:
(i) certain reward (CR), which indicates the amount
of reward for the certain option in a trial; (ii) expected
value (EV), which indicates the averaged reward for the
uncertain option in a trial; (iii) reward prediction error
(RPE), which indicates the difference between the out-
come of the uncertain option and EV in a trial. We detail
these components of an example trial in the caption of
Fig. 1. Notably, the influence of reward components in
previous trials on mood ratings in the current trial fol-
lows an exponential decay. We also considered other
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forms of reward components, such as uncertain reward
(UR), which indicates the actual reward for the uncertain
option in a trial. All 10 computational models incorpo-
rated different combinations of these reward components
(see more details in Supplementary Note 1 and Supple-
mentary Figure S1).

We quantitatively compared these models on all par-
ticipants. The results showed that the model, including
CR, EV, and RPE, and assuming the cumulative influence
of all preceding trials on current mood decays exponen-
tially, was the best-fitting model (Model 1, Eq. 1; Fig. 3A).
The best-fitting model outperformed other models
according to the Bayesian Information Criteria (BIC).
The model was also the best-fitting model in the MUD
and HC subgroups. We also calculated the posterior
exceedance probability (PXP) and observed similar find-
ings across the overall sample (Supplementary Figure S3).
This model captured the trial-by-trial fluctuation of sub-
jective mood (r#=0.529+0.218, f5=21.169, p<0.001;
Fig. 3B).

This model allows us to quantify the extent to which
different reward components contribute to momentary
mood fluctuations by the weighting coefficients including
the baseline mood wg, CR coefficient wi, EV coefficient
wa, and RPE coefficient ws. Therefore, we defined these
coefficients as reward-mood associations. The model also
includes a decay factor ~.

Group comparisons revealed that individuals with
MUD exhibited a significantly higher baseline mood
wo compared with HCs (wo: 74,00 =2.916, p=0.005,

A p=0.033 B MUD
3000 = - 85 = 1.4 = HC
ol = p=0.062 n.s.
» ~70 = =1.2-
o 4 E
£ 500 - { @ =
c < o
] a 55 = o 1=
Q Qo
w £
-2000 T r 40 I T 1 08 T T 1
HC MUD 0 20 40 60 0 20 40 60
[
° 0.7 = E 0.8 =
g p= 0.013 8 n.s.
o 0.6 ‘5 0.7 -
O £
2 5
505 506
B g
ri -3
@ 2
0.4 T 1 o 0.5 T T 1
0 20 40 60 0 20 40 60
Trials Trials

Fig.2 Comparison of behavioral signatures in the risky decision-making task. (A) Total earnings. Total earnings (y-axis) are displayed for the MUD and HC
groups (x-axis). The black dot and bar indicate the mean and standard deviation, respectively. Individual participant data are shown as scatter points, with
shaded areas representing the data distribution. (B) Trial-level behavioral difference. The y-axis represents trial-by-trial behavioral indices, with reaction
time (RT) log-transformed. The x-axis represents trial number. The lines indicate the mean trajectories for the MUD (purple) and HC (blue) groups, with
shaded areas representing the standard error. Significance symbol convention is n.s.: non-significant
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Fig. 3 Model fit results A. Model comparison. Discrepancies in BIC between each model and the best-fitting model (Model 1, Eq. 1) are shown as A values.
The y-axis denotes the model number, with models arranged in order of fit quality, and the best-fitting model positioned at the top. A values are averaged
across all subjects, with smaller A values indicating better model fit. B. Model fit in example participants. Mood ratings (y-axis) of two example participants
are shown across all 22 trials (x-axis). The orange line with dots represents the observed mood ratings, and the red line indicates the fitted mood ratings

Estimate=13.290, SE=4.557, 95%CI = [4.210, 22.370]).
In contrast, individuals with MUD exhibited signifi-
cantly lower CR coefficient w; and EV coefficients
wa (W1t 400 = -2.824, p=0.006, Estimate = -0.158,
SE=0.056, 95%CI = [-0.270, - 0.047]; wa: £(7409) = -2.758,
p=0.007, Estimate = -0.073, SE=0.026, 95%CI = [-0.125,
-0.020]), as well as a marginally lower RPE coefficient
wg (w3 tz400=—1.935, p=0.057, Estimate = -0.062,
SE=0.032, 95%CI = [-0.126, 0.002]). These results indi-
cate attenuated reward-mood associations in individuals
with MUD. No significant group difference was observed
in decay factor v (7v: fy400=1348, p=0.182, Esti-
mate =0.088, SE=0.066, 95%CI = [-0.042, 0.219]).

To account for the potential confounding effects of
anxiety and depressive symptoms, SDS and SAS scores
were additionally included as covariates. After control-
ling for these factors, individuals with MUD continued
to show a significantly higher baseline mood wy relative
to HCs (wo: t)00)=2228, p=0.030, Estimate=11.955,
SE=5.365, 95%CI = [1.226, 22.684]). Moreover, individu-
als with MUD exhibited marginally lower CR coefficient
wy and significantly lower EV coefficient wz (w1: £ g9
= -1.995, p=0.050, Estimate = -0.148, SE=0.074, 95%CI
= [-0.296, 0.000]; w2: ¢ ) = -2-269, p=0.027, Estimate
= -0.077, SE=0.034, 95%CI = [-0.154, -0.009]; Fig. 4).
No significant group difference was observed in the
RPE coefficient w3 and decay factor ~ after controlling
for SDS and SAS scores (ws: £ 0=~ 1.696, p=0.095,

Estimate = -0.070, SE=0.041, 95%CI = [-0.152, 0.012];
7V tero0=0.363, p=0.718, Estimate=0.028, SE=0.078,
95%CI = [-0.127, 0.184]).

Model parameters predict the severity of substance use
The above parameter analyses revealed group differ-
ences in multiple reward-related coefficients. We fur-
ther examined how these reward-mood associations
were associated with clinical symptom severity. Based on
participants’ self-reported assessments, we specifically
assessed the severity of substance use, depressive, and
anxiety symptoms (see Methods).

Except for CR coefficient w;, both the EV coefficient
we and RPE coefficient w3 were negatively correlated
with substance use severity in the overall sample (w;
p = -0.228, p=0.068, 95%CI = [-0.456, 0.020]; wy p =
-0.389, p=0.001, 95%CI = [-0.583, -0.153]; w3 p = -0.257,
p=0.039, 95%CI = [-0.477, -0.007]; Fig. 5). Similar nega-
tive correlations were observed in the HC group (w; p
= -0.325, p=0.041, 95%CI = [-0.562, -0.039]; ws p =
-0.383, p=0.015, 95%CI = [-0.616, -0.105]; w3 p = -0.447,
p=0.004, 95%CI = [-0.681, -0.150]; see Supplementary
Figure S4). No significant correlations were found in the
MUD group (w; p=0.102, p=0.628, 95%CI = [-0.349,
0.513]; wy p = -0.158, p=0.451, 95%CI = [-0.558, 0.306];
wsp =0.193, p=0.356, 95%CI = [-0.226, 0.548]).

Given the high comorbidity of depression and anxi-
ety among individuals with MUD, we further examined
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whether the reward-mood associations were related to
depressive or anxiety symptom severity. No significant
correlations were found between any of the reward-
related coefficients (CR, EV, or RPE) and depressive or
anxiety symptom severity in any group (see Supplemen-
tary Figure S5 for details).

Discussion

This study systematically examined how reward process-
ing influences the momentary mood in individuals with
MUD during risk gambling tasks. We found that indi-
viduals with MUD made significantly less optimal deci-
sions and showed attenuated reward-mood associations
compared to HCs. Additionally, reduced EV/RPE-mood
associations predicted more severe substance abuse
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symptoms. These findings provide computational evi-
dence for the aberrant reward processing as a key mecha-
nism underlying impaired mood regulation in MUD.

The finding of lower decision-making optimality in
individuals with MUD suggests that they struggle to
select the most rewarding options through effective value
comparison. This behavioral pattern aligns with com-
putational theories proposing that addiction involves
an imbalance between two reinforcement learning sys-
tems: a goal-directed system (model-based, MB) that
supports flexible, outcome-sensitive decision-making,
and a habitual system (model-free, MF) that governs
rigid, stimulus-response behaviors [48, 49]. In healthy
individuals, goal-directed control allows actions to
be guided by anticipated outcomes, whereas habitual
control dominates when behavior becomes automatic
through repetition [50]. Extensive evidence indicates
that chronic substance use gradually shifts behavior from
goal-directed to habitual control [51-53]. For example,
one study employing the two-stage task combined with
reinforcement-learning modeling has demonstrated
that individuals with MUD exhibit lower weights on the
model-based component, indicating a stronger tendency
toward habitual learning and reduced reliance on goal-
directed control [54]. Such an imbalance may impair the
ability of outcome representations to effectively control
responding [1]. In line with this framework, our find-
ings show that individuals with MUD tend to overlook
high-value goals or outcomes, resulting in reduced total
reward acquisition (Fig. 2A). This behavioral inefficiency
reflects a compromised goal-directed system and sup-
ports the notion that impaired value-based decision-
making is a core feature of substance-use disorders.
Considering the elevated rates of criminal behavior and
relapse among individuals with MUD in real life [55-57],
these findings highlight the importance of incorporating
decision-making intervention and cognitive remediation
strategies into treatment programs for MUD.

The finding of attenuated reward-mood associations
highlights an impaired reward system in individuals
with MUD. This diminished coupling between reward
and mood may reflect a reduced sensitivity to natu-
ral rewards such as monetary gain or food, which has
been widely documented in addiction research [58, 59].
Neurobiological evidence supports this interpretation:
methamphetamine exposure leads to decreased dopa-
mine D2 receptor availability and disrupted cortical-
striatal system, both of which are critical for encoding
the motivational value of rewards [60—62]. Such dysfunc-
tion is thought to blunt the neural response to non-drug
rewards, manifesting as reward hyposensitivity [63—65],
and leading to attenuated emotional and behavioral
reactivity to everyday rewarding experiences. Consis-
tent with this view, neuroimaging studies have reported
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hypoactivation of the reward system (e.g., striatum and
medial prefrontal cortex) in response to natural rewards
among individuals with substance use disorders [66—
68]. Clinically, this blunted reward sensitivity results in
reduced motivation and diminished hedonic responses to
non-drug rewards, contributing to mood dysregulation,
anhedonia, and related symptoms in substance users,
including those with MUD [69, 70]. From a computa-
tional perspective, our study extends this literature and
provides quantitative evidence linking reward processing
deficits to mood dysregulation in individuals with MUD.

More importantly, we found that EV/RPE-mood asso-
ciation predicted the substance use severity in the control
group, but not in the MUD group. Although this finding
provides preliminary computational evidence for a close
link between reward processing abnormalities, mood
dysregulation, and substance use in healthy individu-
als, the clinical implications remain unclear, given that
the relationship between symptoms and model param-
eters was observed only in the control group. One pos-
sible explanation is that greater clinical heterogeneity
among the participants with MUD, including differences
in comorbidities, withdrawal phase and treatment sta-
tus, may have introduced additional noise that obscured
parameter-symptom relationships. Previous studies have
shown the translation of reward information into effec-
tive cues for mood can guide individuals toward better
decision-making [71]; however, aberrant reward process-
ing combined with pronounced mood dysregulation may
impair one’s ability to make adaptive choices and increase
the tendency to seek drugs [70, 72]. Our approach was
intend to characterize this process through compu-
tational modeling. Future studies using longitudinal
designs and rigorous characterization of substance use
trajectories will be necessary to explore the potential of
this novel computational metric for assessing the latent
risk of developing substance use disorders in healthy
individuals, and to determine whether these computa-
tional associations can reliably predict clinical outcomes
across different stages of dependence and recovery.

Our study has some limitations. First, our sample
comprised only male individuals with MUD. While the
literature remains inconclusive, accumulating evidence
suggests that females may exhibit greater susceptibility to
developing substance addiction than males [73]. Future
studies should therefore include female participants and
extend the investigation to other forms of addiction (e.g.,
opioid, cocaine) to examine the generalizability of aber-
rant reward-mood associations across sex and addic-
tion subtypes. Second, we used money as a reward cue,
but drug users may show different computational and
behavioral patterns for rewards related to drug cues [69].
Future studies may employ task paradigms including drug
cues. Lastly, although the behavioral and computational
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signatures of mood dysregulation are evident in our
study, it remains unclear what the neural underpinnings
of such aberrant reward-mood association are. Future
studies that combine multimodal imaging and compu-
tational modeling are imperative to further reveal the
specific role of the striatum-frontal-limbic network in
individuals with MUD.
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