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Neural Prediction Errors as a Unified Cue for
Abstract Visual Reasoning

Lingxiao Yang , Member, IEEE, Xiaohua Xie , Member, IEEE, Wei-Shi Zheng , Fang Fang ,
and Ru-Yuan Zhang

Abstract—Humans exhibit remarkable abilities in recognizing
relationships and performing complex reasoning. In contrast, deep
neural networks have long been critiqued for their limitations
in abstract visual reasoning (AVR), a key challenge in achieving
artificial general intelligence. Drawing on the well-known concept
of prediction errors from neuroscience, we propose that prediction
errors can serve as a unified mechanism for both supervised and
self-supervised learning in AVR. In our novel supervised learning
model, AVR is framed as a prediction-and-matching process, where
the central component is the discrepancy (i.e., prediction error) be-
tween a predicted feature based on abstract rules and candidate fea-
tures within a reasoning context. In the self-supervised model, pre-
diction errors as a key component unify the learning and inference
processes. Both supervised and self-supervised prediction-based
models achieve state-of-the-art performance on a broad range
of AVR datasets and task conditions. Most notably, hierarchical
prediction errors in the supervised model automatically decrease
during training, an emergent phenomenon closely resembling the
decrease of dopamine signals observed in biological learning. These
findings underscore the critical role of prediction errors in AVR
and highlight the potential of leveraging neuroscience theories to
advance computational models for high-level cognition in artificial
intelligence.
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I. INTRODUCTION

W ITH the growing volume of data and model complexity,
modern artificial intelligence (AI) models excel in per-

ceptual tasks like text classification [1], image restoration [2],
[3], object detection [4], [5], [6], [7], and video comprehen-
sion [8], [9]. However, they still struggle with complex reason-
ing tasks, such as abstract visual reasoning (AVR), which is
considered a key milestone toward achieving artificial general
intelligence.

The gold standard for testing intelligence in machine learning
is the Turing test. However, the language-based Turing test is
inappropriate for assessing AVR. In AVR tasks, observers should
learn abstract rules within a visual context set and then infer the
correct answer based on those rules. A widely used AVR test
in psychology is Raven’s Progressive Matrices (RPMs) [16].
Fig. 1(a)–(d) show a few RPM-like problems from RAVEN [10],
PGM [11], CLEVR-Matrices [12] and VAD [13]. In these tasks,
an observer is asked to select the correct answer from provided
choice images to fill the missing panel (denoted by the ?
marker), where the multiple rows or columns form the same
abstract rules (e.g., color, size, progression, etc). Besides RPM-
like problems, other visual reasoning tasks, such as Bongard
problems [17], are also used to test intelligence. In each Bongard
problem, there are six positive context images and six negative
context images. The goal is to determine whether the provided
choice image follows the same rules as the positive set or not.

Recently, AVR tasks have gained prominence in machine
learning. Traditional AVR tasks used in psychology typically in-
clude only a small number of problems and object relationships,
and are often not publicly available. However, recent benchmark
datasets for RPM-like problems have significantly accelerated
this line of research [10], [11]. Although some methods have
shown strong performance on specific datasets, few studies
achieve impressive results across all datasets, especially in
scenarios such as in-distribution evaluation, out-of-distribution
(OOD) generalization, few-shot learning and reasoning on
complex natural images.

Another open question concerns the learning settings. Exist-
ing deep models for AVR mostly require large amounts of sam-
ples for supervised training. Although these studies enhance our
understanding of AVR in deep learning, the supervised learning
strategy is fundamentally different from that used by humans. In
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Fig. 1. An illustration of two type of AVR problems used in this study from different datasets: the RPM-like problems from (1) the 16-images-based RAVEN-type
problems, including RAVEN [10], PGM [11] and CLEVR-Matrices [12], and (2) the 9-images-based VAD [13] problems, and the Bongard problems from
Bongard-LOGO [14] and Bongard-HOI [15] datasets. In each RPM-like problem as shown in (a)–(d), a few context images are provided. The goal is to choose
the correct one (highlighted in red) from the provided choice images to fill in the missing one (denoted by ?), making rows or columns with similar patterns. The
Bongard problems in (e) and (f) provide two different sets: one is positive set containing similar patterns, and the other one is negative set with different patterns.
Methods should classify which set is belong to for the two provided choice images. Obviously, for all tasks, a subject should recognize diverse visual objects and
their attributes, and then discover relationships among these objects for inference.

a standard human intelligence test, a human observer typically
engages with different AVR problems directly and performs self-
supervised learning for correction. This self-supervised learning
strategy, common in humans, has been largely underexplored in
recent AVR studies.

How should deep models solve complex AVR problems? A
well-known principle in biological learning is minimizing pre-
diction errors (PEs), where primates actively predict incoming
sensory signals and adjust based on the error between predictions
and actual feedback [18]. Inspired by this idea, we leverage
this well-established concept – PEs – as a central mechanism
for supervised and self-supervised AVR learning. In supervised
learning, we propose the predictive reasoning block (PRB),
and frame AVR as a prediction-and-matching process [19],
where an agent iteratively generates predictions and calculates
the discrepancy (i.e., PEs) between such predictions and the
choices. This approach bypasses the need to explicitly learn and
represent abstract rules. Built on PRB, we propose a new net-
work called PredRNet, which achieves state-of-the-art average
performance and superior generalization capabilities across a
wide variety of AVR benchmarks. Surprisingly, we observe that
PEs in PredRNet automatically decrease during model training,
an emergent phenomenon strikingly similar to the reduction
in dopamine signals observed during biological learning. For
self-supervised learning, we also mimic the minimization of
dopamine signals in biological learning by setting PE as an
objective in contrastive learning. This method yields a new
self-supervised model, SSPredRNet: Overall, we emphasize
that PE is vital in both supervised and self-supervised AVR.

Partial results of this work have been presented at
ICML’2023 [20]. Beyond the conference version, the present
paper makes the following new advances:
� We propose a new self-supervised learning framework for

AVR, termed SSPredRNet, where predictive error (PE) is
exploited as the key signal to construct training samples
and support inference in novel reasoning tasks.

� We are, to the best of our knowledge, the first to unify su-
pervised and self-supervised AVR under the neuroscience-
inspired principle of PE.

� We conduct extensive comparisons with state-of-the-art
self-supervised methods.

� We further evaluate both PredRNet and SSPredRNet on
natural image datasets.

� Comprehensive results on 19 benchmark datasets confirm
that our models achieve leading performance across diverse
machine learning evaluation protocols.

Overall, this study thus highlights PE as a neuroscience-
grounded principle for visual reasoning, and provides strong
baselines for future work in AVR.

II. RELATED WORK

Here, we first discuss studies on two related types of AVR
tasks(e.g., RPM-like and Bongard problems) and then introduce
the main idea of PEs in both neuroscience and computer vision.

A. Abstract Visual Reasoning

Reviewing all AVR tasks is beyond the scope of this work.
We kindly refer readers to a very recent survey [21] for a more
comprehensive analysis. Here, we focus on two classes of tasks:
RPM-like problems – the most commonly studied task in recent
deep learning research, and Bongard problems – a few-shot
visual reasoning task.

RPM-like Problems: As a standard type of IQ test in psychol-
ogy, RPM-like problems [11], [12], [13], [16] (see Fig. 1(a)–(d))
are useful for understanding human abstract and analogical
reasoning abilities [22]. Developing computer algorithms to
solve RPM-like problems is a promising area of research in
artificial intelligence, particularly in the pursuit of human-level
intelligence and beyond. Early studies in psychology typically
rely on cognitive theories, such as structure-mapping [23], ana-
logical perception [24], and symbolic representation [22], to
heuristically solve RPM-like problems. However, the RPM-like
problems used in these studies are manually designed by human
experts and thus limited in size. Such small-scale datasets do not
provide a comprehensive testbed for modern machine learning
and computer vision algorithms.
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To accelerate relevant research in machine learning, Wang and
Su [25] use first-order logic to formulate RPM-like problems
and automatically generate a large number of them. Based on
this dataset, Hoshen and Werman [26] propose perhaps the first
deep neural network (DNN) to solve simple geometric patterns.
Barrett et al. [11] argue that most existing DNNs are unsuitable
for discovering high-level abstract statistical relations, leading
to inferior performance on RPM-like problems. To address
this, they introduce a relation module [27] for convolutional
neural networks (CNNs), forming a new network architecture –
Wild Relation Network (WReN). Beyond network architecture
development, two large-scale RPM-like datasets – RAVEN [10]
(Fig. 1(a)) and PGM [11] (Fig. 1(b)) – are also created. Some
studies point out the defects in the original RAVEN and pro-
pose improvements such as RAVEN-FAIR [28] and Impartial-
RAVEN [29]. More recently, Spratley et al. [30] develop an
anti-objectivist visual reasoning dataset. These new datasets
significantly accelerate the development of novel methods,
including those that explore row-wise and column-wise re-
lationships [29], [31], [32], [33], [34], discover multi-scale
patterns [28], [35], improve relation modules with MLP [36]
or transformer [12], [37], design neuro-symbolic representa-
tions [38], [39], [40], use commutative algebra for matrix rep-
resentation [41], fuse features through graph networks [42],
employ multi-label learning [43], and learn models under semi-
supervised [44] and self-supervised settings [45], [46].

Bongard problems: Besides the RPM-like problems, several
studies propose to address another AVR task — Bongard prob-
lems. Over fifty years ago, a collection of one hundred human-
designed problems has been invented by M. M. Bongard [17] to
demonstrate the large gap between high-level human cognition
and computer algorithms. In this task, humans or machine mod-
els need to learn high-level of concepts from a few support im-
ages, where the concepts are goal-oriented, context-dependent,
and analogical [47]. After that, the subjects should use the
learned concepts to reason the correct labels of query images,
i.e., belonging to positive or negative sets. For this task, a few ma-
chine algorithms have been proposed, including casting Bongard
problems as an inductive logic programming [48] problem or a
concept communication [49] problem. A more recent report [50]
casts each Bongard problem as a few-shot learning problem
and solve this problem by DNNs. To advance the development
of machine models, Nie et al. [14] develop a program-guided
generation method to produce a large set of Bongard problems in
action-oriented LOGO language (Fig. 1(e)). In addition, another
Bongard-like problem – Bongard-HOI [15] (Fig. 1(f)) has been
designed for understanding human-object interactions (HOI) in
natural images.

B. Prediction Error in Neuroscience

PE is a well-known concept in neuroscience. The conventional
view of sensory processing postulates that cortical neurons
encode absolute magnitudes of stimulus input. The PE instead
emphasizes that our brain maintains an internal model and ac-
tively generates predictions for incoming signals. What cortical
neurons actually encode are the relative differences between

the predictions and the actual sensory input, rather than the
absolute sensory input per se .

Schultz et al. [51] pioneer the study of reward PE and show
that the difference between the predicted reward and the actual
reward received is the key factor driving biological learning.
This neural substrate fits well with the temporal difference learn-
ing proposed in the field of reinforcement learning. A similar
concept is later introduced into sensory processing. Rao and
Ballard [18] incorporate PE into a three-layer neural network
and find that the neural receptive fields after training show
strong similarities to the center-surround effects reported in the
neurophysiological literature [52], [53], [54], [55], [56]. The
concept of PE has now been extended to the auditory system [57],
the hippocampus [58], and the prefrontal cortex [59].

Friston and Kiebel [60] further extend this idea and pro-
pose a unifying theoretical framework for understanding human
cognition. Namely, the brain constructs an internal model to
approximate the operations of the external environment. This
internal model generates predictions about what the observed
sensory evidence should be, and the brain uses PEs to update the
belief held in the internal model. This theory can explain a wide
range of cognitive phenomena, including binocular rivalry [61],
reinforcement learning [62], visual illusions [63], and even
atypical behavior in psychiatric populations [64] etc.

In summary, the PE is one of the most fundamental neurosci-
entific concepts and may make a signiticant contribution to AI
when building human-like models or beyond.

C. Prediction Error in Computer Vision

Prediction-based processing has also been introduced into the
field of data compression in many years ago [65]. In recent
computer vision research, some works have also used prediction-
based processing as loss functions or training strategies for
various applications [66], [67], [68], [69], [70], [71], [72], [73].
For example, Karol and Yann [68] train a predictor to approx-
imate the original sparse codes to improve inference speed.
Carl et al. [67] propose an self-supervised learning method
by predicting the relative position of image patches. Zhang et
al. [71] design a framework to learn good representations by
estimating color images from grayscale images. Oord [72] et al.
propose to learn good features by predicting the future in latent
space with powerful autoregressive models. More recently, He
et al. [74] demonstrate that good representations of deep models
can be learned by predicting images from their corrupted ones.

Instead of using PE only as a loss function or a training
strategy, a few works [75], [76], [77] incorporate PE into the
network architecture for object recognition. Although our work
uses PE like several previous studies, we focus on AVR tasks and
do a very different implementation. First, our network performs
cross-image prediction, whereas previous methods only perform
prediction within a single image. The two structures are differ-
ent, but all satisfy the prediction-based framework. Second, due
to the nature of the problem, our model only fuses high-level
features across images, whereas [75], [76], [77] emphasize the
computation of PEs across all layers. Third, our model iterates
prediction-based processing in a stacked fashion without any
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Fig. 2. (a) An overview of the proposed PredRNet. It contains an image encoder – ResNet-4B, to parallel transform input images to features, a stacked structure
having multiple predictive reasoning blocks (PRBs) to abstract relationships between features from context images and choice images, and a classifier to obtain
score for each choice. (b) Structures of our ResBlock and ResNet-4B. For a 80× 80 image, the output size of each block is also shown. (c) Details of the proposed
PRB.

recurrent connection. Furthermore, our model can be easily
employed in supervised and self-supervised settings without too
much engineering adaption.

III. PREDRNET

Our PredRNet contains three components: (1) an Image En-
coder that transforms each image into a 3-dimensional high-
level representation (features), (2) multiple (K ≥ 2) stacked
Predictive Reasoning Blocks (PRB) to extract relationships
between the independent srepresentations of the context and
choice images, and (3) a Classifier that outputs scores for the
choice images.

A. Image Encoder

Several studies have provided baseline results using popular
networks like ResNet-18 or ResNet-50 [78] and their extended
variants (hereafter referred to as baseline networks) [10], [11],
[29], [31], [45], [46]. For example, SRAN [29] combines three
ResNet-18 models to extract features and then uses their pro-
posed structure to discover rules. PRD [45] and NCD [46]
leverage the ImageNet [79] pre-trained ResNet-18 to build
robust feature representations in the self-supervised setting of
RAVEN problems. We argue that these networks are suboptimal
because their properties (e.g., large kernel sizes, more stacked
blocks, 32× subsampling) are designed for natural images,
not for the typical smaller images used in AVR problems [80]
(Fig. 1). Additionally, some of these baseline networks fuse all

images of an AVR problem together at the first layer. This “early
fusion” approach only captures low-level relationships between
images rather than high-level relationships, limiting reasoning
performance. Therefore, we propose a new ResNet variant to
provide a stronger baseline for solving AVR problems.

Our image encoder has four ResBlocks, each consisting of
a residual branch and a shortcut branch. The residual branch
contains three convolutional layers. The shortcut branch first
applies an average pooling layer to downsample inputs [81] and
then matches the output size of the residual branch by a 1× 1
convolutional layer. These two branches are then added together
to form the input for the next block. After the four blocks,
we append a 1× 1 convolutional layer (Conv5) to reduce the
feature dimension for further processing. The overall structure
of our image encoder is shown in Fig. 2(b) right. Importantly, all
context images (e.g., eight images in RAVEN-type problems) are
processed indpendently by the image encoder to create distinct
features, without any fusion across context images. More details
about the image encoder can be found in Appendix A, available
online. We will refer to our image encoder as ResNet-4B.

B. Rearranging to Choice-Related Features

Our ResNet-4B extracts features from all context and choice
images (e.g., eight context and eight choice images in a RAVEN
problem) in parallel, without exploring the relationships among
them. However, the core of AVR tasks lies in examining rela-
tionships between context and choice features. Therefore, it is
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crucial to combine these image features to form choice-related
features, and an appropriate relational module can be used to
extract relationships among them. This rearrangement depends
on the exact structure of the problem. We now introduce our
rearrangement operation separately for each dataset.

Let xi ∈ RD×H×W and tj ∈ RD×H×W represent the i-th
context and j-th choice features, respectively. C and T are the
numbers of context and choice features. The concatenation op-
erator is denoted by [., .]. The choice-related features of different
problems are defined as:
� RAVEN-type problems: RAVEN-type problems include

RAVEN, I-RAVEN, RAVEN-FAIR, PGM, and CLEVR-
Matrices datasets. Fig. 1(a)–(c) show examples. These
problems containC = 8 context andT = 8 choice images.
We concatenate eight context features and one choice
feature to form a choice-related feature:

Xj = [x1,x2, . . .,x8, tj ], j = 1, 2, . . ., 8, (1)

where Xj ∈ R9×D×H×W is the j-th choice-related fea-
ture.

� VAD problems: A VAD example is shown in Fig. 1(d).
It has a structure similar to other RPM-like problems but
contains only C = 5 context images and T = 4 choice
images. Similar to (1), we can formulate a choice-related
feature of VAD by concatenating the five context features
with a choice feature as:

Xj = [x1,x2, . . .,x5, tj ], j = 1, 2, . . ., 4, (2)

where Xj ∈ R6×D×H×W is the j-th choice-related fea-
ture.

� Bongard problems: Examples of Bongard -LOGO and
Bongard-HOI are shown in Fig. 1(e) and (f). Each Bongard
problem contains six positive and six negative context im-
ages, and two choice images. Following [14], we construct
two choice-related features for each choice image feature
tj , j = 1, 2 as:

X [j,1] = [xpos
1 ,xpos

2 , . . .,xpos
6 , tj ], (3)

X [j,2] = [xneg
1 ,xneg

2 , . . .,xneg
6 , tj ], (4)

where xpos
i and xneg

i denote a positive and a negative
context feature respectively. Each choice-related feature
contains C = 6 context and T = 1 choice features. Thus,
X [j,1] and X [j,2] have the same shape of R7×D×H×W .

In summary, each choice-related feature has the same shape
formulation: Xj ∈ R(C+1)×D×H×W , where C indicates the
number of context features.

C. Stacked Predictive Reasoning Blocks

Although solving AVR problems is a high-level cognitive
task, we argue that it still follows the prediction-and-matching
process as in perceptual systems [19]. For example, in a RPM-
like problem, an observer must first examine all context images
to learn the implicit rule. Based on this learned rule, the observer
then predicts what the correct answer should be and match
this prediction to the choice images. The matching step can be
formulated as calculating the error between the prediction and
the choice images, and the PEs are subsequently used to refine

the learned rule. Since the initial learned rules and predictions
may be incorrect, the prediction-and-matching process should
be iterated. Thus, we argue that PE is the critical cue for correct
reasoning. Based on this theory, we propose a novel reasoning
block – PRB, Fig. 2(c).

The PRB is the most important component of our PredR-
Net. Its goal is to extract relationships among all features
within a choice-related feature, Xj ∈ R(C+1)×D×H×W . To
ease implementation in toolkits like PyTorch, we first trans-
form each choice-related feature Xj from R(C+1)×D×H×W to
RD×(C+1)×L, where L = H ×W . After this transformation, a
built-in PyTorch function – Conv2D – can be applied simul-
taneously along the 2-nd dimension to abstract context-choice
relationships, and along the 3-rd dimension to extract spatial
cues. We then split Xj into two feature sets: the C context fea-
tures Xc ∈ RD×C×L and a single choice feature tj ∈ RD×1×L

(output after Split in Fig. 2(c)). AC × 1 convolutional layer with
D channels combines all context features into a single predicted
feature xp ∈ RD×1×L, which has the same size as the choice
feature. The difference between the predicted feature and the
choice feature constitutes PE. We show the process as:

[Xc, tj ] = Split(Xj), (5)

xp = BN(ConvC×1(Xc)), (6)

ej = ReLU(tj)−ReLU(xp), (7)

where the PE ej ∈ RD×1×L represents the discrepancy between
the prediction from the context features and the j-th choice
feature.

We then concatenate the PE ej with the original context
features Xc along the 2-nd dimension and pass them through
two additional convolutional layers. Similar to our ResBlock, a
shortcut is added to facilitate optimization. This process can be
formulated as:

Y 0
j = [Xc, ej ], Y 0

j ∈ RD×(C+1)×L, (8)

Y l
j = ReLU(BN l(Convl3×3(Y

l−1
j ))), l = 1, 2, (9)

Y ′
j = Y 2

j +BN(Conv1×1(Xj)), (10)

where Y ′
j is the output of this PRB.

By far, our PRB extracts the relationships between context
and choice features. However, a single prediction-and-matching
is likely insufficient. We design a stacked structure combining
several (K ≥ 2) PRBs to gradually refine the learned rules
(Fig. 2(a)). In our implementation, both errors and context
features are forwarded for further processing in each PRB (see
(8)–(10)).

D. Classifier

Similar to previous models [28], [31], [36], our classifier is
an MLP that outputs a single score for the j-th choice-related
feature: scorej = MLP (Flatten(Y ′

j)). For each RPM-like
problem, our PredRNet outputs T scores in parallel, i.e., T = 8
for RAVEN-type problems, and T = 4 for VAD problems. The
choice image with the highest score across T scores is selected
as the final result. For each choice image of a Bongard problem,
we select the result with the highest score between outputs from
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(3) and (4). For model training, we use the same binary cross-
entropy loss as in [28], [31], [32] for all RPM-like problems, and
the default cross-entropy [14], [15] for the Bongard problems.

IV. SELF-SUPERVISED PREDRNET – SSPREDRNET

Current state-of-the-art methods rely heavily on large
amounts of labeled data for supervised training. In contrast,
humans can learn from vast amounts of unlabeled data in an self-
supervised manner, demonstrating strong deductive and inferen-
tial abilities. Our goal is to further develop an self-supervised
learning model for AVR.

A commonly used strategy for self-supervised learning is
contrastive learning. However, applying contrastive learning to
abstract rules presents significant challenges for two reasons.
First, constructing effective positive and negative samples for
contrastive learning is difficult. The same abstract rule can be
expressed through different objects, while a single object can
participate in the expression of multiple rules. The positive
and negative samples need to be defined at the abstract level,
rather than merely being differentiated on image-level proper-
ties. Second, AVR tasks require the integration of contrastive
information into both learning and inference. Specifically, the
method used to construct positive and negative samples during
learning should also be readily applicable during inference when
the model encounters new AVR problems.

We propose that PEs in PredRNet can naturally extend to con-
structing positive and negative samples for contrastive learning.
PEs can be used as a criterion for selecting choices during infer-
ence across various tasks, serving as a crucial mechanism that
unifies both learning and inference in self-supervised learning.

Building on this concept, we introduce a new self-supervised
model – SSPredRNet. This approach ensures that all infor-
mation comes from a single problem, and that samples are
genuinely “positive” or ”negative” (see Discussion Section VI-B
for a comparison with previous methods). The calculation of PEs
allows for seamless inference on new problems.

A. Construction of Samples for PRB Reasoning

We construct training samples based on two facts: Fact (1)
each problem contains complete and correct rules in context
images, e.g., the first two rows of context images in RAVEN
problems; Fact (2) changing any one of these context images
has a high probability of breaking the rules. Based on these facts,
we can easily construct positive and negative training examples
for self-supervised training (see Fig. 3).

Similar to the supervised model, self-supervised learning of
AVR also requires rearranging all features extracted by our
image encoder in a manner tailored to each specific task for
relationship extraction, as shown:
� RAVEN-type problems: The positive and negative feature

sets are constructed as:

Xpos
1 = [x1,x2, . . .,x5,x6], (11)

Xneg
j = [x1,x2, . . .,x5, tj ], j = 1, 2, . . ., 8, (12)

Fig. 3. Different sample construction methods after feature extraction. AVR
problems often contain correct rules within their context images, e.g., the first two
rows in a RAVEN problem. Therefore, replacing any context image will largely
disrupt these rules, resulting in samples with incorrect rules. Since different
tasks have different prior structures, we provide different sample construction
methods, from (a) to (c). Features colored in lightgrey are not used during
the training phase to avoid including correct rules as negative samples for
optimization. Although there are slight differences in the construction methods,
our central idea remains the same: disrupting contextual information to generate
positive and negative errors for contrastive learning.

� VAD problems: Similar to all RAVEN-type problems,
these feature sets can be formulated as:

Xpos
1 = [x1,x2,x3], (13)

Xneg
j = [x1,x2, tj ], j = 1, 2, 3, 4, (14)

� Bongard problems: For each problem, we construct four
feature sets, defined as following:

Xpos
1 = [xpos

1 ,xpos
2 , . . .,xpos

5 ,xpos
6 ], (15)

Xpos
2 = [xneg

1 ,xneg
2 , . . .,xneg

5 ,xneg
6 ], (16)

Xneg
3 = [xpos

1 ,xpos
2 , . . .,xpos

5 ,xneg
6 ], (17)

Xneg
4 = [xneg

1 ,xneg
2 , . . .,xneg

5 ,xpos
6 ], (18)

Given the constructed positive/negative samples, each sample
has the shapeXpos|neg

j ∈ R(C ′+1)×D×H×W , whereC ′ = 5, 2, 5
for the RAVEN-type, VAD, and Bongard problems, respectively.
Using these feature sets, we setC = C ′ in (6) to extract relation-
ships via our PRB. For example, in a RAVEN problem, C = 8
in (6) for PredRNet is replaced by C = 5 in SSPredRNet, while
in a VAD problem, C is changed from 5in PredRNet to 2in
SSPredRNet.
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B. Prediction Errors and Contrastive Loss

In PredRNet, our PRB uses PEs between context and choice
features to represent relationships. The philosophy behind
PRB follows the prediction-and-matching process [19]. Our
self-supervised learning approach also follows this principle but
explicitly uses PEs as optimization goals.

Unlike PredRNet, PEs in SSPredRNet include both positive
PEs eposi and negative PEs enegj for contrastive learning. Here
we use the same operations to calculate PEs (5)–(7) except
that different choice-related features are used. For RAVEN-type
problems, eposi and enegj are calculated based on the postive
and negative choice-related features in (11)–(12). For VAD
problems, eposi and enegj are calculated based on the choice-
related features in (13)–(14); and for Bongard problems, eposi

is calculated based on the choice-related features in (15)–(16),
while enegj is calculated based on choice-related features in
(17)–(18). After that, we define the contrastive loss [82], [83]:

LCTR =
1

2

npos∑

i=1

||eposi ||2 +
nneg∑

j=1

(max{0, τ − ||enegj ||})2,

(19)

where || · || is the L2 distance and τ is a margin parameter
defining when incorrect rules have a large distance to be ignored
by the loss.npos andnneg are numbers with correct and incorrect
rules in each AVR problem respectively. Moreover, similar to
multi-head loss employed on different layers [28], we useLCTR

on multiple PRBs for training.
Intuitively, the first term (||eposi ||2) in (19) penalizes positive

PEs that are too large in positive samples (i.e., all context
features). The second term (

∑nneg

j=1 (max{0, τ − ||enegj ||})2)
penalizes PEs that are too small within negative samples (i.e.,
context features and one disrupt feature). The model can learn
meaningful consistency at the rule-level by continuously opti-
mizing (19).

C. Prediction Errors as Inference Signals

For a RAVEN-type problem, which contains eight con-
text and eight choice images (Fig. 1(a)–(c)), we construct two
sets for the j-th choice image (j = 1, 2, . . ., 8): one combin-
ing the first and third rows: Xj1 = [x1,x2,x3,x7,x8, tj ],
and the other combining the second and third rows: Xj2 =
[x4,x5,x6,x7,x8, tj ]. The PRBs are used to extract relation-
ships and output PEs for these two sets – ej1 and ej2, respec-
tively. The final result is selected by finding the minimum PEs
among all eight candidate choices as:argminj∈{1,...,8}(||ej1||+
||ej2||).

For a VAD problem, which contains five context and four
choice images (Fig. 1(d)), we directly use the second row
Xj = [x4,x5, tj ] (j = 1, 2, 3, 4) to extract PEs. The final result
is selected by the minimum PEs among all four candidate choices
as: argminj∈{1,...,4}(||ej ||).

For a Bongard problem, which contains two choice im-
ages, six positive context images, and six negative con-
text images, we construct two feature sets for each choice
feature: Xj1 = [xpos

1 ,xpos
2 ,xpos

3 ,xpos
4 ,xpos

5 , tj ], and Xj2 =

[xneg
1 ,xneg

2 ,xneg
3 ,xneg

4 ,xneg
5 , tj ], where j = 1, 2. Our PRB

output two error sets ej1 and ej2 for these two feature sets
respectively. The label of the j-th choice image is determined
by: argminz∈{1,2}(||ejz||).

V. EXPERIMENTS

We first introduce the datasets used in this study and the
reasons for selecting these datasets in Section V-A. Imple-
mentations of our PredRNet and SSPredRNet are shown in
Section V-B. In Sections V-C, V-D, V-E, V-F, and V-G, we
present comparisons of our PredRNet and SSPredRNet with
many state-of-the-art methods, followed by a number of ablation
studies and analysis to better understand our proposed methods
in Sections V-H and V-I.

A. Datasets

To demonstrate the effectiveness of our methods, we per-
form extensive experiments on a broad range of datasets and
visual reasoning conditions. These datasets are used for multi-
ple mainstream testing setups in current machine learning, in-
cluding in-distribution evaluation (RAVEN/RAVEN-FAIR/I-
RAVEN/PGM-Neutral), (OOD) (seven PGM datasets), visual
reasoning in 3D scenes (CLEVR-matrices), visual reasoning
with limited context information (five VAD datasets), and few-
shot reasoning in both symbolic (Bongard-Logo) and natural
(Bongard-HOI) images. We emphasize that several datasets,
including the seven OOD subdatasets from PGM, five VAD
datasets, the novel abstract shape split in Bongard-LOGO, and
the natural-image-based Bongard-HOI, have been specifically
designed to test a model’s ability for compositional general-
ization. For instance, Bongard-HOI tests the model’s ability to
recombine learned action-object relations (i.e., learn “straddle
bicycle” and “wash car” and test “wash bicycle”). In summary,
we evaluate our PredRNet and SSPredRNet models across a total
of 19 datasets. To our best knowledge, our evaluations cover
the broadest AVR datasets to date. We expect these extensive
experiments to highlight the flexibility and scalability of our
models. We briefly introduce all the datasets as follows.

Three RAVEN datasets: The original RAVEN dataset [10]
introduces a set of relationships, including progression, constant,
union, and arithmetic calculations. This dataset includes 7 dis-
tinct configurations, i.e., Center, 2x2Grid, 3x3Grid, Left-Right,
Up-Down, Out-InCenter, and Out-InGrid. Each configuration
contains 10,000 problems, yielding a total of 70,000 problems
with 1,112,000 images. RAVEN-FAIR [28] and I-RAVEN [29]
are recently developed to fix the shortcut bias in the original
RAVEN. Both contain the same context images as RAVEN but
differ in the way to generate negative answers. Studies in [28],
[29] show that both datasets have no shortcut bias, and thus are
better than the original RAVEN in evaluating models. We thus
include all three RAVEN datasets.

Eight PGM datasets: The whole PGM [11] contains eight
different datasets. PGM-Neutral is used for in-distribution
testing, and the other seven datasets are constructed by leaving
some attributes or some rules out of training sets, allowing to
examine the OOD generalization of networks. Each dataset has
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1,222,000 problems with 119,552,000 images. PGM includes
diverse abstract rules (i.e., XOR, OR, Progression and AND)
among objects, which are very different from those in all RAVEN
datasets.

CLEVR-Matrices: The CLEVR-Matrices dataset [12] is an-
other RPM-like dataset based on the widely used visual question
answer dataset – CLEVR [84]. This dataset includes 3 configu-
rations, i.e., Logic, Location, and Count. Each configuration has
20,000 problems, including 16,000 for training, 2,000 for valida-
tion, and 2,000 for testing. This dataset has three kinds of visual
attributes, i.e., shape, size, and color. Rules are independently
sampled from the set of {null, constant, distribution-of-3}. To
avoid the bias problems in RAVEN [10], the choice images
are generated with the same algorithm in [29]. We summarize
three RAVEN-like datasets, Eight PGM datasets, and CLEVR-
Matrices as RAVEN-type problems because they all contain
eight context and eight choice images in each problem.

Five VAD datasets: VAD [13] contains five datasets, each
containing around 600,000 problems. As shown in Fig. 1(d),
the VAD problems are similar to RAVEN-type problems, but
only have five context and four choice images. VAD is designed
for evaluating visual reasoning with very limited context infor-
mation. Because VAD and RAVEN-type problems follow the
same format of choosing the correct choice image by inferring
abstract rules from context images, we summarize three RAVEN
datasets, eight PGM datases, CLEVR-Matrices, and five VAD
datasets as RPM-like problems (Fig. 1).

Two Bongard datasets: Bongard-LOGO [14] is constructed
for evaluating human-level visual reasoning. Problems in this
dataset mimic the Bongard problems [17] where observers infer
visual concepts from their contexts with a few examples. There-
fore, Bongard-LOGO transforms 12,000 problems into few-shot
binary classification tasks with context images for abstracting
rules, and choice images for answering. Bongard-HOI [15] is
another new visual reasoning benchmark that focuses on com-
positional learning of human-object interactions from natural
images. This dataset has disjoint training, validation, and testing
sets. The training set contains 118 concepts and 21,956 few-shot
instances. The validation and testing sets have 17,184 and 13,941
few-shot instances respectively, corresponding to 167 and 166
visual concepts.

B. Implementations

We set the filters to [32,64,96,128,32] in our ResNet-4B. The
first four numbers are our feature channels in ResBlocks, while
the last one is the reduced feature channels before our PRB
extraction. In PRB, the filter channels of Conv in (6) is 32 for
both PredRNet and SSPredRNet. The filters of the other two
Convs are set to 128 and 32, respectively. In addition, we add
K = 3 PRBs after our image encoder because this gives the best
overall performance on the validation sets. The effect of K will
be discussed later.

All datasets have training, validation, and test sets. The valida-
tion set is used to select the best checkpoint for evaluation. Our
model accepts 80× 80 images as input. Optimization is done by
the Adam solver [88] with a learning rate of 1e-3, a batch size of
128 for three RAVEN datasets, and 256 for all PGM and VAD

datasets. The weight decay is 1e-5 for most of the tested datasets,
and 1e-7 for the PGM datasets because PGM is significantly
larger than other datasets. It is worth noticing that we do not
include other supervision information (e.g., metadata) during
training. In addition, for each RAVEN, we report the median
result from 3 different trials. For VAD and Bongard datasets,
we report average results over 3 trials as suggested in [13], [15].
For all PGM datasets, we only report a single result, similar to
many previous works [28], [31], [84]. For SSPredRNet, we fix
the learning rate and weight decay as 1e-3 and 1e-5 respectively,
and set margin τ in (19) as 0.7.

C. In-Distribution Abstract Visual Reasoning

We first evaluate our methods on RAVEN/RAVEN-FAIR/I-
RAVEN/PGM-Neutral for in-distrbution visual reasoning.

PredRNet: In the supervised setting, we compare our PredR-
Net with several state-of-the-art models, including WReN [11],
LEN [33], CoPINet [31], SRAN [29], DCNet [32], SCL [85],
MLRN [35], MXGNet [42], Rel-Base [36], MRNet [28],
STSN [12] and DRNet [86]. In addition, most previous studies
only evaluate their methods on one or two datasets. For a more
comprehensive comparison, we directly run their published
codes on all these four datasets.

Table I(a) shows all results obtained by supervised models.
We obtain three main conclusions. First, our PredRNet and the
recently proposed DRNet achieve similar average performance
on the four datasets, significantly better than other models.
Specifically, DRNet uses a CNN stream and a ViT stream for
image-wise feature extraction and integration. After that, a rela-
tion module similar to Rel-Base [36] is adopted to extract rules
for prediction. Our PredRNet, however, uses PEs for relation-
ships. Thanks to this powerful design, our PredRNet provides
strong performance with a simple image encoder, which has
significantly smaller number of parameters than DRNet (1.27 M
v.s. 24.6 M). Second, some recently proposed methods, such as
MLRN, DCNet, and CoPINet, only show good results on one
or two benchmark datasets. For example, MLRN obtains nearly
perfect result (98% ) on PGM, but performs poorly on three
RAVEN datasets (all<30% ). Both DCNet and CoPINet achieve
promising results on the original RAVEN but unsatisfactory
results on the other three benchmarks. In contrast, our PredRNet
achieves good performance on all four benchmarks (all >96%
). These results demonstrate the robustness of PredRNet in
discovering diverse types of rules in different datasets. Third,
STSN, SCL, Rel-Base, and MRNet are four competitive models,
although they do not perform well as ours. STSN, SCL, and
Rel-Base directly extract relations in all eight context images.
MRNet deliberately includes row and column relation modules.

SSPredRNet: In the self-supervised setting, we compare our
SSPredRNet with two state-of-the-art self-supervised models –
NCD [46] and PRD [45]. Table I(b) shows all the results. We
have two concluding remarks. First, our SSPredRNet achieves
the best performance on all four datasets. Specifically, NCD and
PRD obtain similar performance (around 47% ) on average. Our
SSPredRNet provides a relative performance improvement of
averaged 33.4% compared to NCD and PRD. This is possible
because our self-supervised method better utilizes the context
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TABLE I
ACCURACY (%) ON FOUR MAIN IN-DISTRIBUTION DATASETS, INCLUDING PGM NEUTRAL (PGM-N), ORIGINAL RAVEN (RVN-O), RAVEN-FAIR (RVN-F),

AND IMPARTIAL-RAVEN (I-RVN). FOR RAVENS, ACCURACY IS OBTAINED BY AVERAGING ACROSS ALL SEVEN CONFIGURATIONS. † INDICATES THE

PERFORMANCE WAS NOT REPORTED IN ORIGINAL PAPER, AND IS OBTAINED BY THEIR PUBLISHED CODE. THE BEST AND THE SECOND BEST ON EACH DATASET

ARE HIGHLIGHTED BY BOLD AND UNDERLINE, RESPECTIVELY.

TABLE II
ACCURACY (%) ON ALL EIGHT PGM DATASETS (1 NEUTRAL AND 7 OOD VERSIONS). H.O: HELD-OUT. THE BEST AND THE SECOND BEST ARE HIGHLIGHTED

USING BOLD AND UNDERLINE.

and choices images to generate more reliable training samples,
resulting in a better model. Second, comparing Table I(a) and
(b), our SSPredRNet, as a self-supervised model, even performs
better or is comparable with some recent supervised methods,
such as WReN, LEN, CoPINet, SRAN, DCNet, MLRN and
MXNet. Some of these works even use additional meta-targets
as auxiliary training (e.g., WReN, MXNet, CoPINet).

D. OOD Generalization of Abstract Visual Reasoning

One hallmark of AVR is to apply learned abstract rules to
OOD scenarios. We further evaluate the OOD generalization
capability of our PredRNet and SSPredRNet.

PredRNet: In the supervised setting, we compare our Pre-
dRNet with several existing models including WReN [11],
MXNet [42], MRNet [28], ARII [34], and DRNet [86]. Slot
Abstractor [37] uses transformers to extract object-centric rep-
resentations and relationships. However, Slot Abstractor is first
trained on PGM-Neutral in an self-supervised manner, and then
fine-tuned on other PGM datasets in a supervised manner. We
therefore do not include Slot Abstractor. To be more comprehen-
sive, we also include results on PGM Neutral. Table II(a) show
all OOD results in the supervised setting. PredRNet obtains the
best average OOD generalization results across all PGM OOD
datasets. In particular, our PredRNet achieves an average perfor-
mance of 60.4% , outperforming the second performer DRNet
by an absolute gain of +2.1%. our PredRNet demonstrates

superior OOD generalization capability, further validating the
effectiveness of PEs in RPM-like problems.

SSPredRNet: Again, we compare SSPredRNet against NCD
and PRD. Table II(b) shows all OOD results in self-supervised
settings. Our SSPredRNet also obtains the best average OOD
generalization results in all PGM OOD datasets. SSPredRNet
exhibits promising performance and achieves an absolute gain
of +4.4% than the second best method – NCD. In addition,
our SSPredRNet performs favorably against two supervised
methods – WReN and MXGNet in most of the datasets. Com-
pared to WReN and MXGNet, our SSPredRNet obtains better
accuracy on H.O Triples and H.O LineType, and achieves a
similar performance on Neutral, Extrapolation and H.O Pairs.
All results suggests that SSPredRNet have good OOD general-
ization capabilities.

E. Abstract Visual Reasoning in 3D Scenes

Previous evaluations only include the RAVEN-like problems
with symbolic 2D images (e.q., squares, triangles). However,
AVR is a central ability that should be performed on more real-
istic objects. We thus further evaluate our models on CLEVR-
Matrices [12], which is designed for AVR in 3D objects and
scenes. The CLEVR-Matrices dataset is derived from the widely
used visual question answer dataset – CLEVR [84], which is also
a 3D-rendered dataset. As shown in Fig. 1(c), each problem also
has eight context and eight choice images. This dataset focuses
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TABLE III
ACCURACY (%) ON OTHER RPM-LIKE DATASETS, INCLUDING 3D SHAPE RENDERED PROBLEM – CLEVR-MATRICES [12] AND VAD [13]. THE BEST AND THE

SECOND BEST ARE HIGHLIGHTED USING BOLD AND UNDERLINE.

more on the rendered 3D shapes in a scene, with very different
object attributes and rules, such as shapes and colors.

PredRNet: We follow the original paper [12] and directly
train our PredRNet on all three configurations of CLEVR-
Matrices. The performance of PredRNet is compared against to
MLRN [35], SCL [85], and STSN [12]. The results are shown in
Table III(a). Our PredRNet performs very competitively with
the attention-based method – STSN [12].

SSPredRNet: To our best knowledge, no self-supervised meth-
ods have been evaluated on CLEVR-matrices. We thus directly
show the performance of our SSPredRNet in Table III(a). Our
SSPredRNet performs significantly better than chance 12.5%
and even better than the supervised model – MLRN on this
dataset. These results demonstrate our models are also good
reasoning solvers for different types of context images and
objects.

F. Limited Context Based Abstract Visual Reasoning

RAVEN, PGM, and CLEVR-matrices problems contain eight
context and eight choice images, providing rich information
for reasoning. However, AVR should be robust if the available
information is scarce. We thus further test our models on five
VAD datasets [13]. As shown in Fig. 1(d), VAD problems are
very similar to RAVEN-type problems, but a VAD problem
only contains five context images and four choice images. The
limited context information considerably increases the difficulty
in reasoning.

PredRNet: We compare our PredRNet against two state-of-
the-art models on VAD – LBC [13] and NSM [87]. Table III(b)
demonstrates that PredRNet obtains the best performance in four
out of five VAD datasets and the second best in the other VAD
dataset.

SSPredRNet: Again, no self-supervised models have been
evaluated on VAD. We thus directly show the performance
of our SSPredRNet in Table III(b). Our SSPredRNet performs
significantly better than the chance level (25% ), indicating that
it indeed learns the abstract relationship given limited context
information. The result can also serve as a baseline for future
self-supervised AVR models.

G. Few-Shot Abstract Visual Reasoning

Few-shot reasoning is fundamental and arguly most chanl-
lenging in artificial intelligence, particularly for tasks requiring

adaptability and generalization from limited data. It often re-
quires models to learn from a few data while applying reasoning
to make informed decisions in novel scenarios. Evaluating on
these few-shot reasoning problems is the key to examine the
versatility, scalability, and robustness of existing computing
models. To this end, we evaluate our models on two few-shot
reasoning benchmarks – Bongard-LOGO [14] based on syn-
thetic images and Bongard-HOI [15] based on natural images.
Both of them are thought to reflect more human-like reasoning
processes and designed to solve 2-way 6-shot classification
problem.

PredRNet: We compare our PredRNet against Base-SC, Base-
MoCo, ProtoNet on Bongard-LOGO because the three models
exhibit the best performance in the original paper [14]. Ta-
ble IV(a) shows all results on Bongard-LOGO. Our PredRNet
obtains the highest accuracy (on average 76.9% ) in all four test
sets of Bongard-LOGO.

We also compare our PredRNet against WReN and Meta-
Base on Bongard-HOI because the two models exhibit the
best performance in the original paper [15]. Table IV(b) shows
the results on Bongard-HOI. Our original PredRNet (labeled
as R-4B) is trained from scratch only on this dataset, and its
performance is comparable to Meta-Base (labeled as IN-R50).
However, Meta-Base (IN-R50) utilizes the ResNet-50 pretained
on ImageNet as its image encoder and has a significantly
larger number of parameters than PredRNet (R-4b) (24 M v.s.
1.2 M). We thus replace our image encoder ResNet-4B with
the pre-trained image encoder of Meta-Base to form a new
version of PredRNet (labeled as IN-R50). PredRNet (IN-R50)
achieves the best performance on all four test sets of Bongard-
HOI. This apple-to-apple comparison to other methods indicates
that our PRB can be flexibly combined with other image en-
coder and is also effective to extract relationships on natural
images.

SSPredRNet: We train our SSPredRNet on both Bongard-
LOGO and Bongard-HOI. Due to a lack of comparison mod-
els, we again directly show the performance of SSPredR-
Net alongside of supervised models in Tables IV(a) and (b).
We find that the performance of SSPredRNet is significantly
above chance and even close to supervised methods. For ex-
ample, our SSPredRNet exhibits averaged accuracy of 72.6% ,
much higher than the three existing supervised methods on the
Bongard-LOGO dataset. These results strongly support the ro-
bustness of SSPredRNet.
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TABLE IV
ACCURACY (%) ON TWO FEW-SHOT REASONING BENCHMARKS, INCLUDING BONGARD-LOGO BASED ON SYNTHETIC IMAGES [14] AND BONGARD-HOI [15]

BASED ON NATURAL IMAGES. THE BEST AND THE SECOND BEST ARE HIGHLIGHTED USING BOLD AND UNDERLINE.

TABLE V
COMPARING DIFFERENT OPERATIONS IN PRB FOR RELATIONSHIP EXTRACTION

ON THREE RAVEN DATASETS

The comparable performance of SSPredRNet with other
supervised models indicates that our self-supervised learning
based approach is better suited for Bongard problems as com-
pared to other RPM-like datasets. First, the Bongard dataset is a
binary classification problem, where each choice sample is de-
termined as positive or negative. This leads in a random guessing
probability of 50% , significantly higher than 12.5% (8-way) in
the RAVEN-type datasets and 25% (4-way) in the VAD dataset.
Second, we eliminate the third and second row data in RAVEN-
type and VAD problems during training to minimize noise. How-
ever, this approach simplifies the assessment of 3-row and 2-row
consistency to 2-row and 1-row consistency in all RAVEN-type
and VAD problems, greatly reducing available samples for rule
induction and reasoning. This partial testing fails to fully exploit
the complete rule consistency within an RPM-like matrix. While
the Bongard problem is unique in that it involves deriving rules
from the context of 12 images (i.e., 6 positive and 6 negative sam-
ples). Our self-supervised learning based approach interchanges
one image from the positive set and one from the negative
set. In this case, most context images (i.e., 10 out of 12) are
retained during training and testing, making the performance of
self-supervised learning close to the performance of supervised
learning.

H. Ablation Experiments

We conduct a number of ablation experiments to further
evaluate the idea of PE in AVR. All experiment settings are
the same as presented in Section V-B.

The number K of PRBs (Fig. 4): In this section, we use our
ResNet-4B as the image encoder and append different numbers
(K ∈ [1, 4]) of PRBs to evaluate the effect of the number of

PRBs on reasoning performance. We also compare different
numbers of PRBs with the case in which additional ResBlocks
are appended after image encoder.

We conduct this experiment on four in-distribution datasets
– three RAVEN datasets and the PGM-Neutral dataset, and
two OOD PGM datasets – PGM-Interpolation and PGM-
Extrapolation. All results are shown in Fig. 4. We obtain better
performance by increasing PRBs from K = 1 to K = 3. But
adding ResBlocks has no significant effects on performance.
We speculate that in the ResNet-4B baseline, the image encoder
processes the images in parallel, and only the classifier combines
the features across images to extract their relationships. Thus,
simply adding ResBlocks may help to process the features
in individual images rather than extracting cross-image rules.
Instead, our PRB explores the cross-image information by cal-
culating PEs. This is evident by the fact that adding a single PRB
to the ResNet-4B baseline improves performance by about 20%
for RAVEN-FAIR and about 50% for PGM-Neutral. Adding
2 or 3 PRBs further improves performance on all datasets,
giving new state-of-the-art results in both in-distribution and
OOD testing. However, adding PRBs more than 3 degrades the
performance in most cases. This phenomenon may be due to
overfitting.

The effects of various operations in PRB: PRB is the core
component in our models to extract abstract rules. PRB per se
involves several mathematical operations (see (5)–(10)). Here,
we conduct six different ablation studies on PredRNet to address
the effects of these operations and designs on reasoning perfor-
mance. For simplicty, we only include three RAVEN datasets
for ablation studies.

1) MLP: To directly test the effects of PRBs, we replace our
PRBs with MLPs

2) Rmv.PE: PE is the central concept and key feature for
successful reasoning in our model. We remove the step of
computing PEs ((5)–(8)), and replace Y j with Xj in (9),
such that our PRB contains only the two last convolutional
layers to extract relationships.

3) Fwd.Err: We forward only errors without concatenating
errors with eight context features.

4) Cx/P: We concatenate and forward eight context fea-
tures and predicted choice features without calculating
PEs.
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Fig. 4. Analysis of additional K ResBlocks and our PRBs on four in-distribution datasets – RAVEN, RAVEN-FAIR, I-RAVEN and PGM-Neutral, as well as
two widely used OOD datasets – PGM-Interpolation and PGM-Extraplation. The image encoder in this experiment is our ResNet-4B. K = 0 indicates that only
the image encoder combined with the classifier, without any relation modules, is used for prediction.

Fig. 5. PEs calculated by (7) on the test sets of all RAVEN datasets along the training progression. Overall, our PredRNet indeed minimizes these errors during
the training process in most cases. Best viewed in PDF.

5) Cx/P/C: We concatenate and forward eight context fea-
tures, one predicted feature, and one choice feature with-
out calculating PEs.

6) Fus. +. The success of our models can also be explained
by attention mechanisms, which predict that addition and
subtraction make no difference in performance. We there-
fore replace (7) with ReLU(x) +ReLU(y) like an atten-
tion operator. In this case, (+) and (−) have completely
different mathematical effects.

We find that removing the key components of PRB or PRB
per se impairs model performance in all above ablation studies,
highlighting the beneficial contributions of the PE calculation
and other mathematical operations in PRB.

More ablation studies: In appendix, we include more ablation
studies, including the comparisons of different types of image
encoders, the representations of PEs, the effects of minimizing
PEs explicitly in PredRNet, explicit representation of rules in
our PRBs. All these ablation studies suggest that our original
design of PRB is the best option.

I. Emergent Minimization of Prediction Errors

The key concept of PEs in neuroscience is that biological
agents learn tasks by minimizing these errors. Similarly, in our
PredRNet, we explicitly calculate and process PEs, although
they are not directly included in the loss function. It remains an
open question whether PredRNet learns to reason by minimizing
internal PEs, similar to biological learning. To explore this, we
computed the PEs for the three PRBs on the test set during model
training (see Fig. 5). Surprisingly, we observed that the overall
magnitude of PEs significantly decreases as training progresses
in most cases. The initial increase of PEs in PRB-1 on RAVEN
and I-RAVEN may be due to the unstable representation of
relationships in the very early stages of optimization. These
findings suggest that our network indeed learns to minimize
PEs.

Furthermore, once learning is complete, stacked PRBs are re-
quired to simulate information processing from lower to higher-
level neurons when a trained model encounters a new problem.
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This process continuously uses prediction-and-matching to ex-
tract and refine PEs specific to the problem, which is crucial for
identifying the correct answer during inference. It is important
to note that in SSPredRNet, PEs are explicitly included in the
loss to be minimized, so we did not conduct the same analysis
for SSPredRNet.

The striking similarity between the behavior of our model and
biological brains strongly supports the biological plausibility of
both PredRNet and SSPredRNet.

VI. CONCLUSION AND DISCUSSION

In this work, we treat the concept of PE from neuroscience as
a central cue in both supervised and self-supervised learning
for AVR tasks. Our supervised models (i.e., PredRNet) and
self-supervised models (i.e., SSPredRNet) have been exten-
sively tested across various datasets and task regimes, includ-
ing in-distribution reasoning, OOD generalization, 2D and 3D
images, and few-shot reasoning. These results strongly sup-
port our models as general and state-of-the-art approaches for
AVR. Moreover, the emergent minimization of PE during model
training highlights a unique connection between biological and
machine learning systems.

A. Supervised and Self-Supervised AVR Models

Though solving the same tasks, PredRNet and SSPredRNet
develop different representations of object attributes and abstract
rules. This difference primarily stems from the availability of
fully labeled samples in supervised learning, which allows the
model to learn complete information for each task (e.g., RAVEN,
VAD, and Bongard) and make well-informed decisions. In su-
pervised learning, the model can be seen as learning to assess
the consistency across three rows or three columns. In contrast,
self-supervised learning lacks labeled information. For example,
in RAVEN, SSPredRNet learns the relationships between target
objects through [x1, · · ·,x6], and during testing, it only evalu-
ates the relationships between two rows. In the case of VAD,
the available information is even more limited, where partial
predictions are made using only the second row.

Our self-supervised AVR model occupies a middle ground
between unsupervised and supervised learning. Like unsuper-
vised methods, it does not rely on human-annotated labels;
instead, it leverages pretext tasks to generate supervisory signals
directly from the data. Such self-supervised approaches have
gained substantial traction in both vision and language research,
as they combine the label-free nature of unsupervised learning
with the effectiveness and scalability needed for large-scale
representation learning.

B. Comparison Our SSPredRNet With Other Methods

A common approach in self-supervised learning is to con-
struct positive and negative samples for contrastive learning.
However, constructing positive/negative samples based on ab-
stract rules presents a significant challenge. NCD [46] addresses
this by using the first two rows of a RAVEN problem as positive
samples, while constructing eight negative samples by filling

the missing position in the third row with eight choice images.
NCD [46] also replaces the last four choice images with images
from other RAVEN problems. However, this method has a
high probability of mistakenly labeling the correct choice as a
negative sample. Similarly, PRD [45] uses contrastive learning
to pull the first two rows of an RAVEN problem closer, while
pushing them apart from context images sampled from other
RAVEN problems. This approach also fails when other RAVEN
problems share the same logical rules as the current one.

To avoid the inclusion of correct rules as negative examples,
we exclude the last row of RAVEN problems. Our positive
samples Xpos consist only of context features from the current
RAVEN problem, ensuring that these features contain complete
and correct rules (as shown in Fact (1)). Negative samples are
constructed by replacing the features of context image 6 with the
features of a choice image. This replacement disrupts the rule
embedded in the first two rows, ensuring that the negative sample
is valid. To maintain consistency with the original RAVEN
test, we replace context image 6 because observers predict the
last image by learning from all previous images. Notably, this
method to construct positive and negative samples can also be
readily used during inference. In summary, our utilization of PEs
provides an unified framework for learning and inference.

C. Analysis of PredRNet and SSPredRNet

Our models are centered around PEs in the hidden space.
One intriguing question is whether an interpretable interface
can be built to visualize the model’s predictions. In other words,
it would be beneficial to reconstruct the visual appearance
of both the predictions and PEs. However, we recognize that
directly reconstructing predicted features is challenging, as it
heavily depends on the decoder’s design. Therefore, we focus
on visualizing the hidden representations of object attributes and
relationships in both PredRNet and SSPredRNet, as shown in
Fig. A1 in Appendix, available online.

Moreover, we also used GradCAM [89] to visualize the repre-
sentation of relations and performed the decoding analysis. The
results support that our model indeed learned the representations
of abstract rules (Details in Appendix B, available online).

D. Predictive Coding and Neuroscience

Predictive coding is a well-established theory in neuroscience
and has been used to explain various phenomena, such as contex-
tual effects in visual processing [18] and dopaminergic activity
in reinforcement learning [51]. However, no research has yet
directly applied predictive coding to explain high-level visual
reasoning in humans. In Rao’s seminal work [18], predictive
coding was implemented using neural networks. In the era of
deep learning, more studies have integrated predictive coding
theories, for instance, by adding feedback connections in feed-
forward CNNs [75], [76] and RNNs [63] for object recognition.
Research has also shown that predictive coding can lead to
neural activity in artificial networks that closely resembles that
of biological neurons [77], [90].

Here, we include no additional feedback or recurrent connec-
tions. Instead, we use PE as a key feature to deduce abstract
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rules or to construct positive/negative samples. Interestingly,
although we do not explicitly minimize PEs, the PE in PredRNet
naturally decreases during optimization. This emergent neural
phenomenon aligns with findings in recent neuroAI studies (e.g.,
grid cells, V1 simple cells). To our best knowledge, this is the
first example where PE minimization has naturally emerged
during model training. These results highlight deep connections
between artificial and biological neural networks.

E. Predictive Coding and Intelligence

AVR is considered as a crucial step toward general intel-
ligence. But does predictive coding represent a fundamental
computational mechanism for realizing general intelligence?
Understanding the nature of intelligence is a shared goal for both
neuroscientists and AI researchers, though it remains a broad and
complex challenge.

We believe predictive coding is one specific implementation
of the broader Bayesian brain theory, but it is certainly not
the only approach to performing inference. For example, Karl
Friston recently proposed that minimizing free energy could
serve as a fundamental computational principle for all living
organisms [60]. In this context, free energy represents the gap
between an organism’s interpretation of the external world and
observed events. As this theory evolves, concepts like active
inference have been introduced to explain human behavior.
Therefore, we view predictive coding as highly consistent with
the more comprehensive Bayesian brain theory. We believe that
the combination of Bayesian inference and neural networks may
be the foundational framework for realizing intelligence.

While our framework is developed for AVR, its central
principle—minimizing prediction errors (PEs)—closely paral-
lels the learning dynamics of modern large language mod-
els (LLMs). In autoregressive and masked prediction tasks,
LLMs are trained to reduce the gap between predicted and
actual tokens, effectively minimizing an internal error signal
derived from contextual expectations. This process resonates
with predictive coding theories in neuroscience. There is neu-
ral evidence that such prediction-based learning also parallels
neural processing in the brain. In our case, stacked predictive
reasoning blocks apply the same principle of PE minimization
to iteratively resolve abstract visual rules. Although the domains
and architectures differ, this shared reliance on error-driven
learning suggests a deeper unifying mechanism across cognitive
neuroscience, visual reasoning, and large-scale AI. We believe
these parallels merit further exploration and may open new
avenues at the intersection of biologically inspired computation
and next-generation AI systems.

F. Limitations

Despite strong empirical results and grounding in neuro-
science, our PE-based framework has several limitations. While
the models generalize well to structured reasoning datasets and
show encouraging results on Bongard-HOI, handling the full
complexity of natural scenes remains an open challenge. The
unsupervised variant provides a biologically inspired alternative
to label-based learning, but its performance still falls short of

the supervised counterpart, suggesting the need for stronger
inductive biases or staged learning strategies. In addition, the
fixed hierarchical prediction–matching design improves inter-
pretability but may limit flexibility for tasks requiring more
adaptive reasoning. Future work could explore dynamic archi-
tectures or attention-driven error routing. Finally, although our
approach qualitatively resembles dopamine-based error signal-
ing, its biological plausibility is preliminary, and incorporating
richer neural constraints (e.g., temporal dynamics, neuromodu-
lation) would strengthen this connection. These limitations point
to key opportunities for building more general, scalable, and
biologically grounded reasoning systems.
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Appendix for Neural Prediction Errors as A Unified
Cue for Abstract Visual Reasoning
Lingxiao Yang, Xiaohua Xie, Wei-Shi Zheng, Fang Fang∗, Ru-Yuan Zhang∗

A. DIFFERENT IMAGE ENCODERS

TABLE I: Ablation studies with different image encoders on
three RAVEN datasets, including the original RAVEN (RVN-
O), RAVEN-FAIR (RVN-F), and Impartial-RAVEN (I-RVN)
datasets. ResNet-XE and ResNet-XL different fusion methods,
with E for early fusion at the first convolutional layer and L
for late fusion in the output of image encoders.

ResNet-18E ResNet-50E ResNet-18L ResNet-50L ResNet-4B

RVN-O 58.0 61.8 53.7 68.1 57.3
RVN-F 15.8 17.3 77.6 62.7 75.6
I-RVN 15.8 11.8 54.2 68.7 71.5

Avg 29.9 30.3 61.8 66.5 68.1

As in our presentation in the main text, some of the
existing methods used the popular ResNet-18 and ResNet-50
as baseline methods for comparison. These baseline methods
fuse all images from the first layer (i.e., early fusion). We
argue that the images should instead be processed in parallel
and transformed into high-level feature embeddings first, and
then a reasoning algorithm should take place and process their
relationships (e.g., late fusion). Thus, we provide stronger
baseline results by using late fusion. We also include our
image encoder — ResNet-4B. Although the image encoder
is not our main contribution here, we would like to provide
some empirical results that might be helpful to this area.

All comparison results are shown in Table I. The early fu-
sion encoders (denoted by E) perform significantly worse than
the late fusion encoders (denoted by L). For example, ResNet-
18E and ResNet-50E perform only slightly better than chance
(12.5%) on RAVEN-FAIR and I-RAVEN. In contrast, ResNet-
18L and ResNet-50L achieve much better performance. In
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addition, the larger number of model parameters in ResNet-
50L does not lead to a significant performance improvement.
Our ResNet-4B contains only 1.28 M parameters (vs. 23.8 M
in ResNet-50L), but achieves the best overall performance. In
addition, according to Table I, ResNet-4B, even as a baseline,
outperforms many existing models by a wide margin.

B. ANALYSIS OF OUR PREDRNET AND SSPREDRNET

Although PredRNet and SSPredRNet achieve impressive
performance on multiple benchmarks, there still remains
unclear whether PEs encode rule-related information, and
whether PEs in supervised PredRNet and unsupervised SSPre-
dRNet encode similar things. We therefore analyze the low-
dimensional embedding of PEs in the final PRB of PredRNet
and SSPredRNet using t-SNE [1].

In Fig. 1, we present t-SNE visualizations of PEs, with
respect to object attributes and relations, since object attributes
and relations play important roles in learning abstract rules
for AVR. Comparing Figs. 1a and 1b, we observe that while
PredRNet generates a greater number of smaller clusters, the
boundaries between these clusters remain relatively distinct.
In contrast, SSPredRNet exhibits a higher degree of mixing
among clusters. This observation helps explain why the per-
formance of unsupervised SSPredRNet is significantly lower
than that of supervised PredRNet. Furthermore, comparing the
two images in Fig. 1a, we find that PredRNet more effectively
encodes the attributes of the objects, with clearer boundaries
between attribute clusters. In Fig. 1b, we note that the PEs
in SSPredRNet tend to express relations; for example, in the
right panel of Fig. 1b, the clusters for ”XOR” and ”OR”
are distinctly visible. This may be related to the directly
optimization of PEs, leading SSPredRNet to relatively better
learn relations.

Moreover, we analyze SSPredRNet on the PGM-
Interpolation dataset using GradCAM [2]. GradCAM
allows for generating different activation maps for the same
image under different labels. By using the rule labels in
the dataset as guidance, we obtained rule-specific activation
patterns. As shown in Fig. 2, distinct rules yield different
attention behaviors: for Line “AND”, the model primarily
attends to background line structures (e.g., circles and slanted
lines), while for Location “XOR”, the model shifts its focus
to the top-right circle, which is critical under the XOR
relation. Nonetheless, given the complexity of the rules
(object category, shape, edge existence, edge number, etc.),
activation maps alone cannot fully capture whether the model
precisely attends to the rule-defining elements. To provide
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(a) PredRNet: Left: object attributes, Right: relations. (b) SSPredRNet: Left: object attributes, Right: relations.

Fig. 1: T-SNE of PEs of the 3-rd PRB. Colored with respect to different object attributes (Color, Number, Position, Size and
Type) and relations (Progression, XOR, OR, AND and Union) in PGM-Neutral.

Fig. 2: GradCAM on an problem from PGM-Interpolation.
“Rows [X,3]” means that using the X-th and third rows for
reasoning, which is consistent with our SSPredRNet.

a more quantitative assessment, we further froze the trained
SSPredRNet and trained a linear classifier on its outputs
using the 12 rule categories provided in the dataset’s meta
information. On the PGM-Interpolation split (train/test), the
classifier achieved 55.4% accuracy, substantially higher than
the random baseline of 8.3%. These analyses together suggest
that SSPredRNet does encode rule-relevant information,
supporting its ability to capture compositional abstractions.

C. EXPLICIT RULE MODELING IN PRBS

TABLE II: Comparing our proposed PRB with a variant by
modeling rules explicitly in PRB.

RAVEN-O RAVEN-F I-RAVEN Avg

Explicit Rule 92.8 96.8 94.4 94.7

Our PRB 96.7 97.9 97.2 97.3

In our current method, we do not explicitly learn rules, but
the PRB does involve an implicitly rule-based representation
process. Taking the RAVEN problem as an example, our
PRB’s first uses an 8×1 convolution layer to directly combine
information from Panels 1 − 8 and matches it with Panels

9−16. Clearly, this combination process includes both accurate
rules [1, 2, 3] and [4, 5, 6], as well as uncertain information,
such as [2, 3, 4]. We do not explicitly specify the range of
combination. To enable comparison, we artificially modify
the combination range by replacing the prediction convolution
in the PRB with a 3x1 convolutional layer, aggregating only
[1, 2, 3] and [4, 5, 6], and then averaging the information from
both rows for the prediction of the third row. The other parts
of the model remain unchanged. Results are shown in Table
II. We did not find that exclusively include accurate rules is
superior to our current PRB approach.

D. EXPLICIT MINIMIZATION OF PES

TABLE III: Explicit minimization of PEs in our PredRNet.

RAVEN-O RAVEN-F I-RAVEN Avg

PredRNet 96.7 97.9 97.2 97.3

PredRNet + PE loss 85.7 91.1 89.3 88.7

We additionally incorporate a loss to minimize errors. How-
ever, we observed a slight decrease in accuracy, as shown in
Table III. This may because SSPredRNet is less accurate than
PredRNet in representing object attributes and the relationships
between objects, as the T-SNE shown in Fig. 1. Adding this
less accurate representation to the already precise outputs
can indeed disrupt the original expression. Furthermore, the
introduction of multiple loss functions raises the question of
how to effectively balance these losses.

E. COMPOSITIONAL GENERALIZATION EVALUATION ON
RAVEN-FAIR

Since our focus is on rule understanding and reasoning, we
performed the dataset split primarily along the rule dimension.
Specifically, RAVEN-FAIR [3], [4] contains multiple attributes
(e.g., object size and object category such as triangles or
circles) governed by four major rules: Constant, Progression,
Arithmetic, and Distribute Three.

To evaluate compositional generalization, we designed the
split such that the training set includes only two rules for
each attribute — Constant and Progression for object size, and
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Arithmetic and Distribute Three for object category — while
the test set includes the complementary rules not seen during
training, i.e., Arithmetic and Distribute Three for object size,
and Constant and Progression for object category.

Importantly, this split does not constrain the data to single-
rule instances. Within these restrictions, different attributes and
rules can still combine freely. For instance, in the training
set, object size governed by (Constant, Progression) may co-
occur with object category governed by (Arithmetic, Distribute
Three), whereas in the test set, the combinations are reversed.
Thus, both the training and test sets contain diverse cross-
attribute compositions, while ensuring that specific combina-
tions do not overlap between them.

Under this split, SSPredRNet achieves an accuracy of
60.3%, slightly lower than the 66.5% achieved on the original
RAVEN-FAIR setting, further demonstrating its robustness to
compositional shifts.
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